Hole Farm Community Woodland

Drainage Strategy Report Hole Farm

April 2023

Revision	Production Date	Prepared by	Checked by	Approved for release by	Sections revised
1.0	12/22	A Singh	R Cooper	-	
2.0	02/23	A Singh	R Cooper		
3.0	04/23	A Singh	R Cooper		

Page

Contents

1

Section Introduction1 1.1 Purpose1 Design Basis.....2

2	Desi	gn Basis	2
	2.1	Existing Site Information	2
3	Plan	ning Policy and Guidance	9
	3.1	Brentwood Local Plan	9
	3.2	The Sustainable Drainage System Design Guide for Essex – Sup	oorting
		Sustainable Development (2020)	10
	3.3	Climate Change	10
4	Drai	nage Design	12
	4.1	Drainage Strategy	12
	4.2	Discharge Rate and Attenuation of the Proposed Adoptable Road	s 12
	4.3	Catchment 1	16
	4.4	Catchment 2	16
	4.5	Catchment 3	17
	4.6	Modelling Criteria	18
	4.7	Water Quality Assessments	19
	4.8	Maintenance of SuDS	20
	4.9	Water Recycling/ reuse plans	20
5	Con	clusion	21
6	App	endices	22

Figures

Figure 1-1 – High Level Drainage Design Process	1
Figure 2-1 – Existing Watercourses	2
Figure 2-2 - EA Flood Zone and Main River Mapping (not to scale)	3
Figure 2-3 – Flood Zone Mapping from HADDMS	4
Figure 2-4 – EA Source protection zone mapping (not to scale)	5
Figure 2-5 – EA Groundwater vulnerability mapping (not to scale)	5
Figure 2-6 – EA Groundwater flood risk mapping (not to scale)	6
Figure 2-7 – Superficial Geology of the Site Extent	7
Figure 2-8 – Extract of solid strata from BGS (Extract from HADDMS)	7
Figure 2-9 – Soil distribution across Scheme Extents	8
Figure 4-1- Catchment Plan	14
Figure 4-2- Exceedance Flow Path Sketch	15
Figure 4-3 – Proposed Drainage Plan	18

Tables

Table 1 – Peak rainfall intensity allowance in small and urban catchments	10
Table 2 – Climate change allowance for peak rainfall	11
Table 3 – Assessment of suitability of SuDS at the site	12
Table 4 – Greenfield Run-off Calculation Summary	13
Table 5 – Design and Simulation Criteria (Micro Drainage model)	18
Table 6 – Water Quality Assessment Summary (Simple Index Approach)	19
Table 7 – SuDS maintenance	20

Appendices

Appendix A: Soil Suitability Report Hole Farm	22
Appendix B: Hole Farm Proposed Building and Car Park Layout	23
Appendix C: Hole Farm Catchment Plan Sketch	24
Appendix D: Greenfield Run-off Rate Calculation	25
Appendix E: Hole Farm Drainage Plan	26
Appendix F: Drainage Network Result Summary	27
Appendix G: Pre-application Advice	28

1 Introduction

1.1 Purpose

1.1.1 This report details the strategy adopted for drainage design at Hole Farm to meet the three primary elements associated with drainage design, as demonstrated in Figure 1-1 below, to ensure an 'Integrated Drainage Design' is ultimately developed in accordance with the necessary design standards such as Sustainable Drainage Systems Design Guide (Essex County Council, February 2020), The SuDS Manual (CIRIA C753) and relevant DMRB design standards.

Figure 1-1 – High Level Drainage Design Process

1.1.2 This report discusses the issues and constraints across the site extents and produces conceptual surface water drainage strategy for the proposed development.

2 Design Basis

2.1 Existing Site Information

Existing watercourses

2.1.1 Upminster branch of Mar Dyke (UT) crosses the Hole Farm site and represent the primary outfall point for the Project.

Existing flood risk assessment data

- 2.1.2 The Environment Agency (EA), via their website, provide floodplain mapping data for the United Kingdom (UK). The floodplain is the area that would naturally be affected by flooding if a river rises above its banks, or high tides and stormy seas cause flooding in coastal areas.
- 2.1.3 The floodplain mapping shows two distinct kinds of flooding for the river and the sea and are described as:
 - Zone 3 (dark blue) Shows the area that could be affected by flooding either from rivers or the sea, if there were no flood defences. This area could be flooded:

- 1 from the sea by a flood that has a 0.5 per cent (1 in 200 years) or greater chance of happening each year; or
- 2 from a river by a flood that has a 1 per cent (1 in 100 years) or greater chance of happening each year.
- Zone 2 (light blue) shows the additional extent of an extreme flood from rivers or the sea. These outlying areas are likely to be affected by a major flood, with up to a 0.1 per cent (1 in 1000 year) chance of occurring each year.
- 2.1.4 Where there is no blue shading, flooding from rivers and/or the sea is very unlikely. There is less than a 0.1 per cent (1 in 1000 years) chance of flooding occurring each year. These areas are described as Flood Zone 1.
- 2.1.5 The information taken from the EA website shows that the Project falls in Flood Zone 1 which is an area with a low probability of flooding.

Figure 2-3 – Flood Zone Mapping from HADDMS

Aquifers and groundwater

- 2.1.6 Groundwater supplies a third of the drinking water in England and Wales. The EA provides groundwater mapping data for the UK. The EA has a duty to monitor and protect the quality of groundwater and to conserve its use for water resources as set out in their Policy and Practice for the Protection of Groundwater (1998). As a result, the EA have defined Source Protection Zones (SPZs) for 2000 groundwater sources (wells, boreholes and springs) used for the supply of public drinking water.
- 2.1.7 The shape and size of a zone depends on the condition of the ground, how the groundwater is removed, and other environmental factors.
- 2.1.8 The maps show three main zones:
 - Inner zone (Zone 1) Defined as the 50-day travel time from any point below the water table to the source. This zone has a minimum radius of 50 metres;
 - Outer zone (Zone 2) Defined by a 400-day travel time from a point below the water table. This zone has a minimum radius of 250 or 500 metres around the source, depending on the size of the abstraction; and
 - Total Catchment (Zone 3) Defined as the total recharge area around a source.
- 2.1.9 A review of the EA groundwater mapping data in Highways Agency Drainage Data Management System (HADDMS) has identified that there are no source protection zones within the Project, shown in Figure 2-4.

2.1.10 A review of the Groundwater Vulnerability Mapping in HADDMS has also been undertaken to examine the EA's assessment of the likelihood of a pollutant discharged at ground level reaching groundwater within superficial and bedrock aquifers. The status of the aquifer shown in Figure 2-5 is an indication of the importance of the groundwater for drinking water supply.

- 2.1.11 The entire scheme is located outside of any aquifer.
- 2.1.12 Some part of the scheme extent lies within an area designated as being at risk from groundwater flooding at ground level and the remainder of the scheme in an area at risk of groundwater flooding below ground level, as shown in Figure 2-6. However, the entire drainage proposal is outside the region having potential of groundwater flooding.

Figure 2-6 – EA Groundwater flood risk mapping (not to scale)

- 2.1.13 As would be expected, groundwater could potentially cause flooding at the ground surface close to watercourse locations.
- 2.1.14 There is no information currently available regarding the groundwater levels across the Hole Farm site. However, based on the current groundwater flood risk assessment, the proposed swales and basins are proposed to be lined. This proposal would be reviewed upon receipt of more detailed groundwater information.

Geology

- 2.1.15 Drift cover is not recorded in the northern part of the region, but large areas of Head (Head is poorly sorted loose surface material (drift) formed from the accumulation of material on lower slopes derived from upslope, most typically via peri-glacial mass movements) deposits are recorded in the south.
- 2.1.16 An overview of the superficial geology can be seen in Figure 2-7.

Figure 2-7 – Superficial Geology of the Site Extent

- 2.1.17 The 1:50,000 British Geological Survey (BGS) information shows the solid geology of most of the land as London clay formation. On the higher ground on north, Claygate member is recorded (clay, silts and fine sands). Figure 2-8 shows the bedrock geology of the site.
 - Figure 2-8 Extract of solid strata from BGS (Extract from HADDMS)

Soils

- 2.1.18 The site was visited between May 25th and 29th 2021. Spade/hand auger borings were conducted to a maximum depth of 1.8m along with sampling topsoil. Two soil types were identified across the site extents. Majority of the land was found to have deep clays with poorly structured subsoil (Soil A). The subsoils show evidence of seasonal waterlogging (greyish or pale colours with ochreous mottles) to shallow depth. The soils are generally stoneless, but slightly stony in places, particularly in the south. On higher ground in the north-west, the soil parent material changes from London clay to interbedded, sands, silts and clays (Soil B). The soils in this area are lighter, with a greater depth of permeable upper subsoil.
- 2.1.19 The distribution of these two solid types is shown in Figure 2-9. The detailed soil investigation report is in Appendix A.

Figure 2-9 – Soil distribution across Scheme Extents

2.1.20 Based on the geology and soil properties of the region, it can be inferred that the soil in much of the scheme extent is clay (infiltration co-efficient less than 3x10⁻⁸ m/s as per Table 25.1 of The SuDS manual CIRIA C753) and is unsuitable for infiltration. Hence, provision of soakaway or other infiltration system along with any hybrid solution of infiltration and discharging to surface water body has been excluded from proposal. Detailed infiltration testing would be carried out at later design stages and this design decision can then be reviewed.

3 Planning Policy and Guidance

3.1 Brentwood Local Plan

The Brentwood local plan outlines the council's strategic priorities and sets out a spatial strategy and supporting policies for achieving this vision. The key policy related to surface water drainage is following:

Policy BE05: Sustainable Drainage

- All developments should incorporate appropriate Sustainable Drainage Systems (SuDS) for the disposal of surface water, in order to avoid any increase in surface water flood risk or adverse impact on water quality.
- Development within areas identified as a Critical Drainage Area (CDA) on the policies map, should optimise the use of Sustainable Drainage Systems by providing an individually designed mitigation scheme to address the sitespecific issues and risk, as informed by a site specific Flood Risk Assessment. This could be provided as part of the Drainage Strategy and must address any issues highlighted in the Surface Water Management Plan, where relevant.
- Greenfield developments, major development and all development within a Critical Drainage Area must achieve a greenfield runoff rate. Where it is demonstrated that this is not possible on brownfield developments then a runoff reduction of 50% minimum should be achieved. The technical approach should be justified in the Drainage Strategy.
- Applicants are required to submit a surface water Drainage Strategy and a Flood Risk Assessment for all major development as well as for all development within a Critical Drainage Area. The Drainage Strategy must include a SuDS Management Plan setting out the long-term management and maintenance arrangements.
- SuDS will be required to meet the following design criteria:
 - the design must follow an index-based approach when managing water quality. Implementation in line with the updated CIRIA SuDS Manual is required. Source control techniques such as green roofs, permeable paving and swales should be used so that rainfall runoff in events up to 5mm does not leave the site;
 - SuDS should be sensitively designed and integrated into the Green and Blue infrastructure to create high quality public open space and landscaped public realm, in line with Strategic Policy NE02: Green and Blue Infrastructure;
 - o maximise opportunities to enhance biodiversity net-gain;
 - improve the quality of water discharges and be used in conjunction with water use efficiency measures;
 - o function effectively over the lifetime of the development;
 - the preferred hierarchy of managing surface water drainage from any development is through infiltration measures, secondly attenuation and

discharge to watercourses, and if these cannot be met, through discharge to surface water only sewers;

- have regard to Essex County Council SuDS Design Guide 2020, or as amended.
- When discharging surface water to a public sewer, developers will be required to provide evidence that capacity exists in the public sewerage network to serve their development, in line with policy requirements in BE02 Water Efficiency and Management.
- Development proposals should be designed to include permeable surfaces wherever possible. Proposals for impermeable paving, including on small surfaces such as front gardens and driveways, will be strongly resisted unless it can be suitably demonstrated that this is not technically feasible or appropriate.

3.2 The Sustainable Drainage System Design Guide for Essex – Supporting Sustainable Development (2020)

This guide forms the local standards for Essex and, together with the National standards, strongly promotes the use of SuDS to help reduce surface water run-off and mitigate flood risk. It also strongly promotes the use of SuDS as they greatly benefit:

- Water quality SuDS can help prevent and treat pollution in surface water runoff, protecting and enhancing the environment and contributing towards Water Framework Directive objectives.
- Amenity SuDS can have visual and community benefits for the community.
- Biodiversity SuDS can provide the opportunity to create and improve habitats for wildlife, enhancing biodiversity and enable multi-functional green infrastructure.

3.3 Climate Change

The Essex SuDS Design Guide (February 2020) suggests climate change factors shown in Table 1 – Peak rainfall intensity allowance in small and urban catchments

for flood risk assessments and drainage strategies to help minimise vulnerability and provide resilience for future events. These climate change factors are based on the 1961 to 1990 baseline.

Table 1 – Peak rainfall intensity allowance in small and urban catchments $^{\rm 1}$

¹ Ref: Flood risk assessments: climate change allowances Guidance by EA, February 2016

Upper End	10%	20%	40%
Central	5%	10%	20%

Environment Agency has updated the climate change factors based on the baseline on a 1981 – 2000 baseline. The updated climate change factors for the 100-year return period event for the site location is shown below.

Table 2 – Climate change allowance for peak rainfall²

Applicable to South Essex	Epoch 2050s (with lifetime up 2060)	Epoch 2070s (with lifetime between 2061 to 2125)
Upper End allowance	45%	40%
Central End allowance	20%	25%

The current design is based on upper end allowance of climate change of 45 percent.

² Source: https://hydrology-test.epimorphics.net/hydrology/climate-change-allowances/rainfall

4 Drainage Design

4.1 Drainage Strategy

- 4.1.1 The Project of 99.09 hectares site area would involve creation of a community woodland facility (See Appendix B) comprising:
 - a. Vehicular access into 94-space car and coach park, with EV charging points and overflow area
 - b. Staff and disabled car parking
 - c. Substation
 - d. An open sided visitor shelter
 - e. A modular café with covered outdoor seating area
 - f. Bin store
 - g. Cycle parking and WC facilities
 - h. Demolition of a grain store and development of a community building including staff welfare and office facilities and outdoor terrace
 - i. Demolition of an agricultural machinery store and construction of a Forestry England Barn
 - j. Service yard and vehicle turning circle
 - k. Surfaced and unsurfaced woodland paths
 - I. Creation of six new ponds
 - m. Countryside heritage and interpretation boards and informal natural play areas
 - 4.1.2 The drainage proposal uses vegetated SuDS and ties aesthetically with landscaping proposal to provide biodiversity benefits along with satisfying hydraulic requirements. All the drainage assets have been designed in accordance with guidance laid out in Sustainable Drainage Systems Design Guide (Essex County Council, February 2020) and The SuDS Manual CIRIA C753. The proposal has also been shared with Essex County council for pre-application and the comments (See Appendix G) at that stage has also formed the basis of the current proposal.

4.2 Discharge Rate and Attenuation of the Proposed Adoptable Roads

4.2.1 The site has existing ditches and ponds which have been proposed to be retained. The drainage proposal would connect to these existing waterbodies to discharge the runoff.

Rank	Discharge Type	Viability	Comments
1	Store rainwater for reuse	Recommended	Rainwater butts have been proposed near tree nursery for

Table 3 – Assessment of suitability of SuDS at the site

Rank	Discharge Type	Viability	Comments
			rainwater storage and reuse (Refer to Hole Farm Community Building MEP Plant Layout for details)
2	Use infiltration techniques, such as porous surfaces in non- clay areas	Not suitable	Infiltration systems are highly unlikely due to soil type on site
3	Attenuate rainwater for gradual release	Recommended	Attenuation of rainwater has been proposed in detention basins.
4	Discharge rainwater to a watercourse	Recommended	Proposed to discharge attenuated run-off in secondary/ tertiary river
5	Discharge rainwater to a surface water sewer/drain	Not Recommended	No public surface water sewer available to discharge
6	Discharge rainwater to combined sewer	Not Recommended	Discharge in combined sewer is not recommended unless no other discharge option is available.

- 4.2.2 The catchment area of the Project is a combination of existing catchment drained by existing drainage arrangement and proposed impermeable area drained through proposed drainage system. The proposed drainage system has been sub-divided into three catchment areas based on ground topography and proximity to outlets. Appendix C and Figure 4-1 shows the catchment areas for the scheme. Drainage network for all these catchment areas discharge to Tertiary or Secondary River at greenfield discharge rate corresponding to 1 year return period.
- 4.2.3 In line with guidance laid out in Sustainable Drainage Systems Design Guide (Essex County Council, February 2020), greenfield run-off has been calculated for 1 year return period using ICP SuDS (See Appendix D) since the individual catchment areas are less than 50 hectares. The table below shows the site characteristics and greenfield run-off rate for catchment areas.

Site Characteristics		
SAAR	600	
SOIL	0.45	
Region	Region 6	

Table 4 – Greenfield Run-off Calculation Summary

Greenfield Run-off Rates				
Catchment Area	Greenfield Run-off Rate	Allowable flow		
	(Return Period of 1 year)	rate		
Catchment 1 (Part of Farm Access, Tree nursery and associated buildings and region west of Hole Farm Lane) – 231930sq.m.	3.119 l/sec/hec	72.3 lps		
Catchment 2 (Parking lot and all abilities access trail) – 154740sq.m.	3.116 l/sec/hec	48.2 lps		
Catchment 3 (Part of access road) – 1372sq.m.	2.915 l/sec/hec	1.0 lps		

4.2.4 The greenfield run-off rate from catchment 3 for return period of 1 year return period using ICP SuDS was coming out to be 0.4 litres per second. However, based on guidance in Sustainable Drainage Systems Design Guide (Essex County Council, February 2020), the outflow from catchment 3 has been limited to 1 litre per second.

Figure 4-1- Catchment Plan

Figure 4-2- Exceedance Flow Path Sketch

4.3 Catchment 1

- 4.3.1 Appropriate rainwater collection system would be proposed as part of the roof of the buildings. Rainwater butts (Refer to Hole Farm Community Building MEP Plant Layout for details) have been proposed to store some rainwater for re-use in the tree nursery. The run-off from the building roof has then been conveyed to the proposed swale through carrier drains.
- 4.3.2 The run-off from the region west of Hole farm lane would be collected through lined swales (0.5m base width, minimum 0.5m depth and 1 in 3 side slope) and would eventually discharge into the existing watercourse after attenuation through a series of detention basins. Refer to Appendix E and Figure 4-3 for drainage proposal. Flow control, in the form of orifice has been provided at the outlet of the basin.
- 4.3.3 The combined outflow at the end of swale for a rainfall of 100-year return period with 45 percent climate change, before it connects to existing watercourse, has been controlled to allowable flow rate of 72.3 lps, which is the greenfield run-off rate from the catchment area for a rainfall of 1 year return period. Plantation in the proposed swale and detention basins would be proposed in liaison with the ecologists.
- 4.3.4 The detention basins have been designed to allow for 300mm freeboard for the rainfall of return period 100 year and 45 percent climate change. Additionally, the detention basins have been checked for rainfall of 1 in 30year return period with climate change coupled with rainfall of return period of 10 years to demonstrate the 300mm freeboard is available. See Appendix F for detailed network summary results.
- 4.3.5 In the event of higher than design return period rainfall, the flooded water would follow the natural ground slope to flow towards the existing watercourse (see Figure 4-2) at the south west of the site.
- 4.3.6 The existing drainage arrangement of ditches and ponds, serving the existing property and surrounding area have been retained and they would discharge at existing rates. Condition and structural assessment of existing drainage assets for their reuse would be taken up in later design stages.

4.4 Catchment 2

- 4.4.1 Appropriate rainwater collection system would be proposed as part of roof of the modular cafe. Rainwater butts (Refer to Hole Farm Community Building MEP Plant Layout for details) have been proposed to store some rainwater for re-use.
- 4.4.2 Lined swale (0.5m base width, minimum 0.5m depth and 1 in 3 side slope) has been proposed at either side of the all-abilities access track and proposed car park. Attenuation to the drainage system has been provided through proposed detention basins, which would eventually discharge to the existing ditch. Refer to Appendix E and Figure 4-3 for drainage proposal. The outflow, for a rainfall of 100-year return period with 45 percent climate change, from the drainage network has been controlled through orifice to allowable flow rate of 48.2 lps, which is the greenfield run-off rate from the catchment area for a rainfall of 1 year return period.

- 4.4.3 The detention basins have been designed to allow for 300mm freeboard for the rainfall of return period 100 year and 45 percent climate change. Additionally, the detention basins have been checked for rainfall of 1 in 30year return period with climate change coupled with rainfall of return period of 10 years to demonstrate the 300mm freeboard is available. See Appendix F for detailed network summary results.
- 4.4.4 Swales with bunds have been proposed at the western edge of Hole Farm Lane to regulate access.
- 4.4.5 In the event of higher than design return period rainfall, the flooded water would follow the natural ground slope to flow towards the existing watercourse (see Figure 4-2) at the south west of the site.
- 4.4.6 The existing drainage arrangement of ditches and ponds, serving the existing property and surrounding area have been retained and they would discharge at existing rates. Condition and structural assessment of existing drainage assets for their reuse would be taken up in later design stages.

4.5 Catchment 3

- 4.5.1 A lined swale (0.5m base width, minimum 0.5m depth and 1 in 3 side slope) has been proposed on the inside of access road. Attenuation to the drainage system has been provided through proposed swales, which would eventually discharge to the existing ditch. Refer to Appendix E and Figure 4-3 for drainage proposal. The outflow, for a rainfall of 100-year return period with 45 percent climate change, from the drainage network has been controlled through a combination of orifices and hydro brake to allowable flow rate of 1.0 lps.
- 4.5.2 Additionally, the drainage proposal has been checked for rainfall of 1 in 30year return period with climate change coupled with rainfall of return period of 10 years to demonstrate that it does not flood. See Appendix F for detailed network summary results.
- 4.5.3 In the event of higher than design return period rainfall, the flooded water would follow the natural ground slope to flow towards the existing watercourse (see Figure 4-2) at the south west of the site.
- 4.5.4 The existing drainage arrangement of ditches and ponds, serving the existing property and surrounding area have been retained and they would discharge at existing rates. Condition and structural assessment of existing drainage assets for their reuse would be taken up in later design stages.

4.6 Modelling Criteria

4.6.1 Design Criteria

The hydraulic model of the drainage networks has been designed using criteria shown in Table 5 below.

Design Parameter	Value
Rainfall Type	FSR Rainfall
Design Return Period	1 year
M5-60	20
Ratio R	0.4
Global time of entry	5 mins
Maximum Rainfall	300 mm/hr
Maximum time of concentration	30 mins
PIMP – Paved Surface	1.0
PIMP – Unpaved Surface	0.2
Volumetric Run-off co-efficient	1.0
MADD Factor	0

Table 5 – Design and Simulation Crit	eria (Micro Drainage model)
Table 5 – Design and Simulation Ont	ena (micro Dramaye mouer)

4.7 Water Quality Assessments

- 4.7.1 As per the requirements of Sustainable Drainage Systems Design Guide (Essex County Council, February 2020), Preliminary water quality assessments, using the Simple Index Approach suggested in The SuDS Manual CIRIA C753, have been undertaken on current drainage proposal for the Hole Farm to investigate likely impacts on the water quality of receiving watercourses.
- 4.7.2 As recommended in The SuDS Manual CIRIA C753, Pollution hazard impact indices created by the development has been proposed to be offset by SuDS mitigation measures.
- 4.7.3 The catchment area 2 falls within the Medium pollution hazard level with nonresidential car parking with frequent change and approximately 500 traffic movements per day. Catchment area 1 & 3 would have Low pollution hazard level with infrequent access to Hole Farm Lane for delivery vehicles. Based on this classification, the pollution hazard indices of the proposed site as per Table 26.2 of The SuDS Manual CIRIA C753 are as shown in Table 6 below.
- 4.7.4 The current Hole Farm Community Woodland proposes Swales and detention basin for draining the run-off from catchment areas 1 and 2. Swales and detention basins have been proposed in series and eventually discharging to outfall (watercourse). The run-off from catchment area 3 is conveyed through swales before discharging to existing ditch. Hence, as per the procedure suggested in The SuDS Manual CIRIA C753, the resulting mitigation indices for discharges to surface water would be as shown in the table below.

SuDS component	Mitigation Indices						
	TSS	Metals	Hydrocarbons				
Swale	0.50	0.60	0.60				
Detention Basin	0.50	0.50	0.60				
SuDS mitigation index (Catchment 1)	0.75	0.85	0.9				
SuDS mitigation index (Catchment 2)	0.75	0.85	0.9				
SuDS mitigation index (Catchment 3)	0.50	0.60	0.60				
	Pollution Hazard Indices						
SuDS Pollution Index for proposal (Catchment 2)	0.70	0.60	0.70				
SuDS Pollution Index for proposal (Catchment 1 & 3)	0.50	0.40	0.40				

Table 6 – Water Quality Assessment Summary (Simple Index Approach)

- 4.7.5 The table shown above indicates that the SuDS proposal is sufficient to mitigate the pollution hazard posed by the development and hence the water quality of the receiving watercourse would not be worsened.
- 4.7.6 Additionally, non-return valves will be proposed at all the three outlets to ensure the pollution is contained within the site in the event of an accidental spillage.

4.8 Maintenance of SuDS

The on-site drainage will be managed by the applicant who will be responsible to maintain any on-site services including drainage. The maintenance provisions are in accordance with Table 7.1 of The SuDS Manual CIRIA C753 guidance and have been modified to suit the current proposal.

Drainage Feature	Regular Maintenance	Occasional/ Remedial Maintenance	Monitoring		
Detention Basin	Inspect inlets, outlets and overflows for blockages and clear if required	Prune and trim any trees and remove cuttings	Inspect every six months or before a forecast storm and		
	Remove sediments from inlet, outlet and forebay	Repair/ rehabilitation of inlets, outlets and overflows	after a large storm		
Swale	Inspect inlets and outlets for blockages and clear if required	Repair erosion or other damage by re-turfing or	Inspect every six months		
	Cut grass	leseeding			
	Clearing the blockages along the length of the swale	Relevel uneven surfaces and reinstate design levels			

Table 7 – SuDS maintenance

4.9 Water Recycling/ reuse plans

4.9.1 Rainwater harvesting is proposed with storage adjacent to both the community building and the modular café. This will be utilised for the flushing of the toilets in each building. The capturing of rainwater in these locations will have some additional localised retention easing pressure on the surface water drainage system. However, this additional localised capacity has been excluded from the surface water drainage calculations so that these two systems can act independently of one another.

5 Conclusion

The Hole Farm Community Woodland proposal aspires to become an inspiring place for the local community to enjoy and explore. The current proposal would increase the impermeable area of the system. The run-off from the proposed areas has been drained through combination of swales, pipes and detention basins, which would help attenuate the outflow to allowable rates and provide mitigation for the pollution from the site as well. The current drainage proposal would thereby not worsen flooding situation for downstream catchments and watercourses. Additionally, the drainage arrangement has been proposed to be sympathetic to landscaping and building proposal and ties into the surrounding to provide biodiversity benefits along with satisfying hydraulic requirements.

The current proposal is preliminary and is based on available existing site information and current building and access proposal. The design decisions and proposal will be developed through the detailed design stage in accordance with the agreed standards.

6 Appendices

Appendix A: Soil Suitability Report Hole Farm

SOIL SUITABILITY REPORT HOLE FARM

Report 1784/1

6th July, 2021

SOIL SUITABILITY REPORT

HOLE FARM

M W Palmer, PhD, MISoilSci, CSci

Report 1784/1 Land Research Associates Ltd Lockington Hall, Lockington, Derby DE74 2RH

6th July, 2021

- 1.1 This report provides information on the soils of land at Hole Farm, Great Warley, Essex. The land is proposed for woodland creation.
- 1.2 Land Research Associates were commissioned to advise on soil conditions with regard to suitability for the proposed vegetation establishment. This report addresses the following items:
 - Depth of soil cover
 - Soil physical characteristics
 - Soil chemical characteristics
- 1.3 The appropriateness of the soils at the site to support the proposed scheme is discussed in the context of these issues.

- 2.1 The site comprises a contiguous block, bordered to the west by the M25, to the east by Great Warley Street and adjoining gardens, to the north by woodland and grassland, and to the south by Codham Hall Lane and adjoining arable land.
- 2.2 The land in the north slopes moderately steeply, levelling to gently undulating topography in the south. Average elevation is approximately 50 m AOD.

PUBLISHED INFORMATION

- 2.3 1:50,000 BGS information shows the solid geology of most of the land as London Clay Formation. On the higher ground in the north, Claygate Member is recorded (clays, silts, and fine sands). Drift cover is not recorded in the north, but large areas of Head deposits¹ are recorded in the south.
- 2.4 The National Soil Map (published at 1:250,000 scale)² shows the land as Windsor Association: heavy slowly permeable soils formed in Eocence clays and associated drift. Burlesdon Association is recorded close to the northern boundary: loamy soils with variable drainage formed in inter-bedded Tertiary silts, sands, and clays.

¹ Head is poorly-sorted loose surface material (drift) formed from the accumulation of material on lower slopes derived from upslope, most typically via peri-glacial mass movements.

²Hodge, C.A.H. *et al.*, (1984). *Soils and their use in Eastern England*. Soil Survey of England and Wales Bulletin No. 13, Harpenden.

Land Research Associates

- 3.1 The site was visited between May 25th and 29th 2021. During the visit spade/hand auger borings were conducted to a maximum depth of 1.8 m in order to determine topsoil/subsoil depth, drainage and general suitability to support the proposed planting scheme. Auger observations were conducted at approximately the intersections of a 100 m grid, giving a sampling density of one observation per hectare. Some sampling points were relocated to the nearest tramline to avoid damage to standing crops. Sample locations are shown by Map 1 in an appendix to this report.
- 3.2 At seven selected sample points, pits were hand-excavated in order to conduct more detailed observations of subsoil structural conditions, and to obtain samples for laboratory physical and chemical analysis. A total of twenty one topsoil and subsoil samples were collected from the seven pits.
- 3.3 Topsoil samples were taken across a broader representative area, roughly on a per field basis (see Map 1).
- 3.4 The distribution of generalised soil types is shown by Map 2 in an appendix to this report. Two soil types were identified.

DENSE SLOWLY PERMEABLE CLAYS (SOIL TYPE A)

3.5 The majority of the land was found to have deep clays with poorly structured subsoil. The subsoils show evidence of seasonal waterlogging (greyish or pale colours with ochreous mottles) to shallow depth. The soils are generally stoneless, but slightly stony in places, particularly in the south.

FINE LOAMS WITH LIGHT DRAINAGE RESTRICTIONS (SOIL TYPE B)

- 3.6 On higher ground in the north-west, the soil parent material changes from London clay to interbedded, sands, silts and clays. The soils in this area are lighter, with a greater depth of permeable upper subsoil.
- 3.7 Full pit descriptions and photographs are included in an appendix to this report.

Table 3.1: Soil type properties

		Soil Survey of	England and Wales	Forestry Commission		
Soil type	Generalised soil type (Map 2)	Soil classification ³	Soil Wetness Class ⁴	Soil classification ⁵	Soil Moisture Class ³	Soil Nutrient Regime ³
A	Slowly permeable clays	Pelo-stagnogleys	III (IV)*	Surface water gley	Very moist	Rich
В	Deep loams	Typical stagnogleys Stagnogleyic brown earths	III (III-IV)	Surface water gley Brown gley	Very moist to moist	Rich

*Figures in brackets in the absence of effective agricultural drainage measures

³ Avery, B.W., 1980. *Soil Classification of England and Wales: Higher Categories*. Soil Survey Technical Monograph No. 14, Harpenden.

⁴ Robson J.D. and Thomasson, A.J., 1977. *Soil Water Regimes*. Soil Survey Technical Monograph No. 12, Harpenden.

⁵ Kennedy, F., 2002. *The identification of soils for forest management*. Forestry Commission, Stockport.

Land Research Associates

NUTRIENTS AND ORGANIC MATTER

(See Tables 4.1, 4.2 and 4.3 for summary)

- 4.1 The topsoils are mainly silty clays, of neutral pH with low stone content. In the northwest the topsoils are fine to medium loams. Organic matter and nitrogen concentrations are moderately low (typical of soils in continuous long term arable use). Available P, K and Mg concentrations are high (see Table 4.1).
- 4.2 The subsoil layers of most of the land are typically slightly alkali clays with high base saturation. Those in the north-west are fine loams with neutral pH.

BULK DENSITY

- 4.3 Bulk density levels for both topsoils and subsoils are marginal to levels presenting rooting restrictions. The topsoil density levels are likely to be at least partially related to the choice of pit locations (avoiding cropped areas)⁶. It may be of note that at Pit location 98 the roots of nearby *Leylandii* were found to over 1 m depth.
- 4.4 Full laboratory certificates are appended to this report.

Field ID*	ъЦ	Р	К	Mg
Field ID.	рн		mg/kg	
1	6.8	20	151	167
2	6.7	37	143	168
3	6.8	41	181	228
4	7.1	28	225	331
5	7.0	53	199	116
6	7.0	30	249	353
7	7.3	36	173	208
8	6.9	27	137	176
9	6.6	29	201	320
10	6.8	36	302	365
11	7.0	42	185	214
12	7.4	41	171	191
13	7.4	29	189	194

Table 4.1: Topsoil nutrient status

*See Map 1

⁶ Foot, K. and Sinnett, D., 2014. Imported soil or soil-forming material placement. Forest Research Best Practice Guidance for Land Regeneration Note 5. Farnham, Surrey.

Table 4.2: Selected soil analyses

Pit No. ¹	Layer ²	Texture	рН	Organic matter ³ %	P mg/kg	K mg/kg	Mg mg/kg	Total N %	Total stones % volume	CaCO₃	Bulk density ⁴ g/cm ³
	TS	Silty clay	6.6	3.7	28	152	323	0.22	5	1.2	1.4
33	SSA	Clay	8.1	1	<2.5	187	1801	0.05	<1	1.7	1.5
	SSB	Clay	8.2	0.9	<2.5	177	1657	0.05	4	2.6	1.5
	TS	Silty clay	7.6	5.3	42	242	319	0.3	<1	1.3	1.4
51	SSA	Silty clay	7.9	1.9	7	105	684	0.05	<1	0.7	1.7
	SSB	Clay	7.7	1.8	10	128	1131	0.10	3	0.9	1.5
	TS	Silty clay	7.5	4.0	35	164	200	0.21	2	1.2	1.2
75	SSA	Clay	8.4	0.8	<2.5	162	1011	0.04	7	1.2	1.5
	SSB	Clay	8.2	0.8	<2.5	163	889	0.04	9	1.1	1.6
	TS	Silty clay	7.2	3.7	34	193	150	0.22	2	1.2	1.8
79	SSA	Clay	8.4	0.9	<2.5	209	209	0.05	8	1.4	1.8
	SSB	Clay	8.4	0.7	<2.5	279	279	0.04	11	2	1.6
	TS	Silty clay	6.9	4.8	37	244	366	0.25	1	0.9	1.5
98	SSA	Clay	7.6	0.7	<2.5	137	427	0.08	2	0.5	1.7
	SSB	Clay	7.9	1.1	<2.5	187	624	0.06	3	0.6	1.6
	TS	Sandy clay loam	6.0	2.9	29	151	99	0.15	1	0.4	1.6
1	SSA	Sandy clay loam	7.1	1.1	<2.5	85	343	0.04	<1	0.2	1.6
	SSB	Sandy clay loam	7.5	0.6	<2.5	168	467	<0.02	<1	0.2	1.7
	TS	Sandy loam	4.4*	3.9	48	262	41	0.24	4	0.2	1.5
80	SSA	Sandy clay loam	7.1	0.8	3	94	114	0.04	7	<0.1	1.7
	SSB	Sandy clay	6.9	1.4	<2.5	164	127	0.03	1	0.5	1.6

Table 4.3: Average by soil type

Soil type	Layer ²	Texture	рН	Organic matter ³ %	P mg/kg	K mg/kg	Mg mg/kg	Total N %	Total stones % volume	CaCO₃	Bulk density g/cm ³
	TS	Silty clay	7.2	4.3	35.2	199	272	0.24	2	1.2	1.5
Α	USS	Clay	8.1	1.1	<2.5	160	826	0.05	2	1.1	1.6
	LSS	Clay	8.1	1.1	<2.5	187	916	0.06	2	1.4	1.6
	TS	Sandy clay loam	5.2*	3.4	39	207	70	0.20	2.5	0.3	1.6
В	USS	Sandy clay loam	7.1	1.0	<2.5	90	229	0.04	-	0.2	1.7
	LSS	Sandy clay loam	7.2	1.0	<2.5	166	297	0.03	1	0.4	1.7

¹See Map 1; ²: TS topsoil SS1 45-50cm SS2 85-100 cm; ³ Dumas method; ⁴Average of three cores per layer

*Suspected analytical error

5.0 Suitability to support commercial woodland plantation

- 5.1. The land has soils with significant drainage restrictions: these can be more effectively managed under agriculture than under forestry, and it is expected that the majority of the land will stand waterlogged to shallow depth for long periods during winter as agricultural drainage systems deteriorate under woodland. However, the warm dry local climate means that prolonged waterlogging during the growing season is unlikely. This means the land is suitable for most commercial hardwood species with the exception of beech.
- 5.2. The land has field drains at present, and this is likely to be partially effective in reducing surface waterlogging during establishment. The soils are well suited to mole drainage, which would further reduce shallow waterlogging during establishment. It would be expedient to consider this step during the site development phase, and pre-planting.
- 5.3. The topsoils have high nutrient levels and adequate weed control during establishment will be necessary.
- 5.4. Rooting may be restricted by the density of the subsoil, although this is unlikely to present a major issue to commercial forestry. Subsoiling prior to planting may be advantageous, although care would need to be taken to ensure the subsoils are sufficiently dry to prevent plastic deformation in these clay soils.

Tree species	Soil type	Suitability	Reason
Pendunculate oak	A Clays	Very suitable	-
	B Loams	Very suitable	-
Hornbeam	A Clays	Suitable	Wetness
	B Loams	Suitable	Wetness
Beech	A Clays	Unsuitable	Wetness
	B Loams	Suitable	Wetness
Downy birch	A Clays	Suitable	Nutrient regime
	B Loams	Suitable	Nutrient regime
Silver birch	A Clays	Very suitable	-
	B Loams	Very suitable	-

Table 5.1: Soil suitability for commercial yields of selected tree species (assessed using Forest Research ESC¹)

¹Pyatt *et al.,* 2001. *An Ecological Site Classification for Forestry in Great Britain*. Bulletin 124, HMSO.
6.0 Potential for habitat creation

- 6.1 The main soils are relatively uniform neutral clays. These soils are probably most suited to lowland mixed broadleaf habitat in this part of the country (W10 in Rodwell's classification). A transition to wet woodland dominated by alder and willow species is likely in lower-lying parts of the site, particularly if existing agricultural drainage is allowed to deteriorate. An area of willow woodland is present in the south-east of the site.
- 6.2 Target habitat (other than woodland) should be neutral moist grassland. However, phosphate concentrations are high (typically MAFF index 3), which means that establishment of species-rich grassland habitat is likely to be difficult: creation of this habitat would need medium-term management in the form of extractive cropping, with herbicides required to control likely dominance of productive grasses and agricultural weed species.
- 6.3 The land has slowly permeable geology, which is well suited to the creation of ponds: this could be achieved by excavating 'clay pits' and puddling/compacting underlying clay to create impermeable conditions. The flatter lower-lying land in the south is best suited to pond creation, although a pond/clay pit is present on level higher ground in the north-east of the site.
- 6.4 There is an opportunity to expand an existing area of wet woodland in the southwest of the site, with the possibility of creating true wetland conditions if the drainage ditch adjoining this area were blocked.

7.0 Summary and Conclusions

- 7.1 The site has heavy slowly permeable soils. This land has good potential to support commercial yields of a range of native tree species, with mixed native broadleaf the target habitat, and with areas of wet woodland for increased habitat diversity. Wetness caused by slowly permeable subsoil is likely to affect planting conditions: mole drainage is recommended to reduce winter waterlogging during tree establishment.
- 7.2 Neutral grassland habitat creation has limited potential without significant management due to elevated phosphate concentrations.
- 7.3 Creation of new ponds would be relatively easy, particularly in the south of the site.

APPENDIX

DETAILS OF OBSERVATIONS

MAPS

LABORATORY ANALYSIS

Obs		Topsoil			Upper subsoil			Lower subsoil		Slope	Wetness
No	Depth	Texture	Stones	Depth	Texture	Mottling	Depth	Texture	Mottling	(°)	Class
	(cm)		(%)	(cm)		-	(cm)		_		
1	0-21	SCL	<5	21-50	SCL	XXX	<u>50</u> -90+	SCL	XXX	5	III
2	0-26	HCL	<5	26-34	HZCL	XXX	<u>34</u> -100+	С	xxx	3	III
3	0-30	MZCL	<5	30-60	MZCL	XXX	<u>60</u> -90+	HZCL	xxx	3	
4	0-26	HCL	<5	<u>26</u> -41	ZC	XXX	<u>41</u> -70+	ZC	xxx	4	III
5	0-25	ZC	<5	<u>25</u> -90+	С	XXX				6	III
6	0-28	С	<5	28-44	С	XXX	44+	Stopped on stones		5	?
7	0-32	HZCL	<5	32-47	HZCL	XXX	<u>47</u> -80+	С	xxx	2	III
8	0-27	HZCL	<5	27-47	HZCL	XXX	<u>47</u> -100+	С	XXX	4	III
9	0-41	С	<5	<u>41</u> -90+	С	XXX				3	III
10	0-21	С	<5	20-90+	С	xx(x)				3	III
11	0-38	HZCL	<5	38-43	ZC	XXX	<u>43</u> -80+	С	XXX	3	III
12	0-29	HZCL	<5	29-48	HZCL	XXX	<u>48</u> -90+	С	XXX	2	III
13	0-33	ZC	<5	<u>33</u> -80+	С	XXX				4	III
14	0-31	ZC	5	<u>31</u> -90+	С	XXX				3	III
15	0-30	ZC	<5	<u>30</u> -90+	С	XXX				2	III
16	0-26	С	<5	<u>26</u> -90+	С	XXX				3	III
17	0-27	HZCL	<5	27-39	HZCL	ххх	<u>39</u> -62 62+	C Stopped on stones	ххх	3	111
18	0-28	HZCL	<5	28-45	HZCL	XXX	<u>45</u> -90+	С	xxx	3	III
19	0-35	ZC	<5	35-50	ZC	XXX	<u>50</u> -90+	С	XXX	2	III
20	0-28	HZCL	5-10	28-42	ZC	XXX	<u>42</u> -90+	С	XXX	2	III
21	0-32	ZC	<5	32-48	ZC	XXX	<u>48</u> -90+	С	XXX	1	III
22	0-32	HCL	5-10	<u>32</u> -82	С	XXX	82+	Stopped on stones		1	III
23	0-34	ZC	0	<u>34</u> -90+	С	XXX				1	III
24	0-32	ZC	0	<u>32</u> -80+	С	XXX				4	III
25	0-16	С	<5	<u>16</u> -90+	С	XXX				4	III
26	0-30	HZCL	<5	<u>30</u> -46	ZC	XXX	<u>46</u> -90+	С	ххх	1	III
27	0-27	HZCL	<5	27-51	HZCL	XXX	<u>51</u> -90+	ZC	XXX	3	III
28	0-29	ZC	<5	29-34	ZC	XXX	<u>34</u> -80+	С	xxx	3	III
29	0-28	HZCL	<5	<u>28</u> -48	HZCL	XXX	<u>48</u> -80+	С	xxx	1	III
30	0-23	HZCL	<5	<u>23</u> -33	HZCL	XXX	<u>33</u> -80+	С	XXX	2	III
31	0-33	ZC	<5	<u>33</u> -100+	С	XXX				1	III
32	0-9	HZCL	<5	9-27	HZCL(dist)	XXX	<u>27</u> -100+	С	xxx	0	III
33	0-28	С	<5	<u>28</u> -56	С	XXX	<u>56</u> -90+	С	xx	3	III
34	0-28	С	<5	<u>28</u> -90+	С	XXX				2	III
35	0-25	С	<5	<u>25</u> -90+	С	XXX				1	III
36	0-26	С	<5	<u>26</u> -80+	С	XXX				2	III
37	0-34	С	<5	<u>34</u> -90+	С	XXX				3	III
38	0-31	С		<u>31</u> -90+	С	XXX				2	III
39	0-18	С	<5	<u>18</u> -90+	С	xx(x)				2	II?

HOLE FARM: SOIL RESOURCES SURVEY- DETAILS OF AUGER OBSERVATIONS AT EACH SAMPLING POINT

Obs		Topsoil			Upper subsoil			Lower subsoil		Slope	Wetness
No	Depth	Texture	Stones	Depth	Texture	Mottling	Depth	Texture	Mottling	(°)	Class
	(cm)		(%)	(cm)			(cm)				
40	0-26	С	<5	<u>26</u> -90+	С	XXX				2	III
41	0-27	С	0	<u>27</u> -90+	С	XXX				2	III
42	0-26	С	<5	<u>26-</u> 90+	С	XXX				3	III
43	0-30	С	<5	<u>30-</u> 100+	С	XXX				2	III
44	0-24	С	<5	<u>24</u> -42	С	xxx	<u>42</u> -90+	С	xxx	0	III
45	0-21	С	<5	<u>21</u> -90+	С	XXX				4	III
46	0-31	С	<5	<u>31</u> -90+	С	xxx				4	III
47	0-27	С	<5	27-47	С	XXX	<u>47</u> -78 78+	С	XXX	2	III
48	0-34	С	<5	<u>34</u> -100+	С	XXX				1	III
49	0-23	С	<5	<u>23</u> -80+	С	XXX				1	III
50	0-24	ZC	5-10	24-46	ZC	XXX	<u>46</u> -90+	ZC	xxx	2	III
51	0-23	С	0	<u>23</u> -80+	С	XXX				1	III
52	0-2i3	С	<5	<u>23</u> -100+	С	XXX				3	III
53	0-21	ZC	<5	<u>21</u> -90+	С	XXX				4	III
54	0-27	ZC	<5	<u>27</u> -90+	С	xxx				1	III
55	0-24	С	<5	<u>24</u> -90+	С	xxx				0	III
56	0-27	С	<5	<u>27</u> -80+	С	xxx				2	III
57	0-23	С	<5	<u>23</u> -90+	С	XXX				2	III
58	0-28	С	<5	<u>28</u> -80+	С	XXX				2	
59	0-24	С	<5	<u>24</u> -90+	С	xxx				2	III
60	0-26	С	<5	26-44	С	XXX	<u>44</u> -80+	С	XXX	2	III
61	0-21	С	<5	<u>21</u> -80+	С	xxx				1	III
62	0-25	Cslca	<5	<u>25</u> -90+	С	XXX				1	III
63	0-42	HZCL(dist)	10	42-80+	mstC	xxx				1	III
64	0-29	С	<5	<u>29</u> -80+	С	xxx				2	III
65	0-21	С	<5	<u>21</u> -90+	С	XXX				3	III
66	0-32	ZC	<5	32-44	ZC	XXX	<u>44</u> -90+	С	XXX	3	III
67	0-50	C(dist)	5-10	50+	Stopped	1				3	III
68	0-31	ZC	5-10	<u>31</u> -90+	С	XXX				2	III
69	0-26	С	<5	<u>26</u> -90+	С	XXX				1	
70	0-23	С	<5	<u>23</u> -53	С	XXX	<u>53</u> -90+	С	XXX	3	
71	0-26	С	<5	<u>26</u> -100+	С	XXX				3	III
72	0-22	С	<5	<u>22</u> -80+	С	XXX				4	III
73	0-30	С	<5	<u>30</u> -80+	ZC	XXX				3	III
74	0-27	С	<5	<u>27</u> -100+	С	XXX				2	III
75	0-30	С	<5	<u>30</u> -90+	С	XXX				0	III
76	0-27	С	<5	<u>27</u> -100+	С	XXX				1	III
77	0-19	С	<5	<u>19</u> -90+	С	XXX				3	III
78	0-29	slstC	<5	29-46	slstC	XXX	<u>46</u> -80+	С	xxx	1	III
79	0-25	slstC	<5	25-43	slstC	XXX	<u>43</u> -70+	С	XXX	2	III

Obs		Topsoil			Upper subsoil			Lower subsoil		Slope	Wetness
No	Depth	Texture	Stones	Depth	Texture	Mottling	Depth	Texture	Mottling	(°)	Class
	(cm)		(%)	(cm)			(cm)				
80	0-31	SCL	<5	31-55	SCL	XXX	<u>55</u> -90+	C/ZC	XXX	4	III
81	0-27	HZCL	<5	29-38	HZCL	XXX	<u>38</u> -90+	С	XXX	3	III
82	0-28	ZC	<5	<u>31</u> -90+	С	XXX				2	III
83	0-27	С	<5	<u>27</u> -90+	С	XXX				4	III
84	0-28	MZCL	<5	28-51	MZCL	XXX	<u>51</u> -90+	HZCL	XXX	1	III
85	0-60	HZCL(dist)	<5	60+	Stopped	XXX				1	-
86	0-28	С	<5	<u>28</u> -90+	С	XXX				4	III
87	0-29	С	<5	<u>29</u> -90+	С	XXX				8	III
88	0-26	С	<5	<u>26</u> -90+	С	XXX				4	III
89	0-26	С	<5	<u>26</u> -100+	С	XXX				2	III
90	0-33	HZCL	<5	33-47	ZC	XXX	<u>47</u> -90+	С	xxx	3	III
91	0-30	ZC	0	<u>30</u> -80+	С	XXX				4	III
92	0-25	С	<5	<u>25</u> -90+	С	XXX				5	III
93	0-32	С	0	<u>32</u> -90+	С	XXX				6	III
94	0-26	С	0	<u>26</u> -70+	С	XXX				2	III
95	0-21	С	0	<u>21</u> -90+	С	XXX				5	III
96	0-44	ZC	0	44-64	ZC	XX	<u>64</u> -90+	ZC	XX	2	II
97	0-31	С	<5	<u>31</u> -90+	С	XXX				5	III
98	0-37	С	<5	37-46	С	XXX	<u>46</u> -80+	С	XXX	3	III

Key to table

Mott	le intensity:
0	unmottled
х	few to common rusty root mottles (topsoils)
	or a few ochreous mottles (subsoils)
xx	common to many ochreous mottles and/or dull structure faces
ххх	common to many greyish or pale mottles (gleyed horizon)

xxxx dominantly grey, often with some ochreous mottles (gleyed horizon) SCL - sandy clay loam

Texture:

- C clay
- ZC silty clay
- SC sandy clay
- CL clay loam (H-heavy, M-medium)
- ZCL silty clay loam (H-heavy, M-medium)
- SZL sandy silt loam (F-fine, M-medium, C-coarse)
- SL sandy loam (F-fine, M-medium, C-coarse)
- LS loamy sand (F-fine, M-medium, C-coarse)
- S sand (F-fine, M-medium, C-coarse)
- P peat (H-humified, SF-semi-fibrous, F-fibrous)
- LP loamy peat; PL peaty loam

a depth underlined (e.g. 50) indicates the top of a slowly permeable layer R - bedrock (a wavy underline indicates the top of a layer borderline to slowly permeable) limestone

- Limitations:
- W wetness/workability
- D droughtiness
- De depth
- St stoniness
- SI slope
- F flooding
- T topography/microrelief
- Texture suffixes & prefixes:
- ca calcareous: x-extremely, v-very, sl-slightly
- (ca) marginally calcareous
- mn ferrimanganiferous concentrations
- gn greenish, yb yellowish brown, rb reddish brown
 - r reddish; (v)st (very) stony; sdst sandstone lst -

dist - disturbed soil layer; mdst - mudstone

Pit descriptions

Pit 33: soil type A (see Map 1 & 2)

- 0-25 cm Very dark greyish brown (10YR 3/2) clay; slightly stony (medium and large mixed pebbles); moderately developed very coarse sub-angular blocky structure; very firm; few fine fibrous roots; non-calcareous; smooth clear boundary to:
- 25-48 cm Grey (7.5YR 5/1) clay with 40% medium and coarse distinct reddish yellow (7.5YR 6/8) mottles; very slightly stony to stoneless; weakly developed very coarse prismatic structure; very firm; no macro-pores; high packing density; no roots; non-calcareous; smooth gradual boundary to:
- 48-60 cm Brown (7.5YR 5/3) clay with 15% fine faint strong brown (7.5YR 5/6) mottles; stoneless; structureless (massive); very firm; no macro-pores; high packing density; no roots; non-calcareous; smooth gradual boundary to:
- 60-80 cm Brown (7.5YR 5/4) clay with 25% grey (7.5YR 6/1) and strong brown (7.5YR 5/6) mottles; moderately stony (soft sandstone? fragments); structureless (massive); very firm; no macro-pores; high packing density; no roots; slightly calcareous; smooth gradual boundary to:
- 80-180 cm Brown (7.5YR 5/4) clay; stoneless; structureless (massive); very firm; no macro-pores; high packing density; no roots; calcareous.

Pit 51: soil type A (see Map 1 & 2)

- 0-35 cm Dark greyish brown (10YR 4/2) clay; very slightly stony (small mixed pebbles); moderately developed very coarse sub-angular blocky structure; very firm; few fine fibrous roots; smooth clear boundary to:
- 35-51 cm Grey (10YR 5/1) clay with 30% fine and medium distinct reddish yellow (7.5YR 6/8) mottles; very slightly stony; weakly developed medium angular blocky structure; very firm; no macro-pores; common fine fissures; medium packing density; common fine fibrous roots; smooth gradual boundary to:
- 51-145 cm Grey (10YR 5/1) clay with 35-40% yellowish red (5YR 5/8) mottles and medium and coarse black ferri-manganiferous concentrations; slightly stony; weakly developed very coarse angular blocky structure; very firm; no macropores; high packing density; no roots; non-calcareous; smooth diffuse boundary to:
- 145-180 cm Greyish brown (2.5YR 5/2) clay with 25% distinct fine strong brown (7.5YR 5/6) mottles; stoneless; structureless (massive); very firm; no macro-pores; high packing density; no roots.

Pit 75: soil type A (see Map 1 & 2)

- 0-25 cm Dark greyish brown (2.5Y 4/2) silty clay; slightly stony (10-15% small and medium mixed pebbles); moderately developed very coarse sub-angular blocky structure; firm; no roots; non-calcareous; smooth clear boundary to:
- 25-37 cm Light brownish grey (2.5Y 6/2) clay with 40% medium prominent reddish yellow (7.5YR 6/8) mottles; weakly developed coarse to very coarse angular blocky structure; very firm; no macro-pores; high packing density; no roots;
- 37-105 cm Light brownish grey (2.5Y 6/2) clay with 15% fine distinct strong brown (7.5YR 5/8) mottles; weakly developed very coarse prismatic structure; very firm; no macro-pores; high packing density; no roots; smooth diffuse boundary to
- 105-180 cm Brown (7.5YR 5/3) clay with 15-20% distinct medium grey (10YR 5/1) and 10% faint strong brown (7.5YR 5/6) mottles; stoneless; structureless (massive) very firm; no macro-pores; high packing density; calcareous.

Pit 1: soil type B (see Map 1 & 2)

- 0-25 cm Dark greyish brown (2.5Y 4/2) (fine) sandy clay loam; very slightly stony (small mixed pebbles); moderately developed coarse and very coarse subangular blocky structure; friable; few fine fibrous roots; non-calcareous; smooth clear boundary to:
- 25-39 cm Light grey (10YR 7/1) (fine) sandy clay loam; stoneless; weakly developed very coarse sub-angular blocky structure; firm; 1-2% medium macro-pores; medium packing density; few fine fibrous roots; non-calcareous; smooth gradual boundary to:
- 39-70 cm Greyish green (5GY 5/2) sandy clay loam with 25% prominent medium reddish yellow (7.5YR 6/8) mottles; stoneless; weakly developed very coarse prismatic structure to structureless (massive); very firm and plastic; no macro-pores; high packing density; smooth diffuse boundary to:
- 70-180 cm Dark greyish green (10YR 6/1) heavy clay loam with 20% distinct yellowish red (7.5YR 6/8) mottles; stoneless; structureless (massive); very firm; no macro-pores; high packing density.

Pit 80: soil type B (see Map 1 & 2)

- 0-25 cm Dark greyish brown (2.5Y 4/2) (fine) sandy clay loam; slightly stony (10% small and medium mixed pebbles); moderately developed coarse coarse sub-angular blocky structure; friable; very few roots;; smooth clear boundary to:
- 25-39 cm Light grey (10YR 7/1) (fine) sandy clay loam; very slightly stony to stoneless; moderately developed very coarse sub-angular blocky structure; firm; 1% fine and medium macro-pores; medium packing density; very few fine fibrous roots; smooth diffuse boundary to:
- 70-180 cm Grey (10YR 6/1) heavy clay loam with 40% distinct medium and coarse yellowish red (7.5YR 6/8) mottles; stoneless; weakly developed very coarse sub-angular blocky structure to structureless (massive); very firm; no macropores; high packing density.

Soil survey pit photographs (May 2021)

Contact : MR MIKE PALMER LAND RESEARCH ASSOCIATES LOCKINGTON HALL LOCKINGTON DERBY DE74 2RH Tel. : 01509 670570 H579	Client :	HOLE FARM	
Please quote the above code for all enquiries		Laboratory Poforona	0
Sample Matrix : Agricultural Soil			
	Card	Number 75	814/21
		Date Received	04-Jun-21
		Date Reported	10-Jun-21

SOIL ANALYSIS REPORT

Laboratory	Field Details				Index		mg/l (Available)			
Sample Reference	No.	Name or O.S. Reference with Cropping Details	Soil pH	Ρ	к	Mg	Р	к	Mg	
524546/21	1	1 No cropping details given	6.8	2	2-	3	20.2	151	167	
524547/21	2	2 No cropping details given	6.7	3	2-	3	37.0	143	168	
524548/21	3	3 No cropping details given	6.8	3	2+	4	41.4	181	228	
524549/21	4	4 No cropping details given	7.1	3	2+	5	28.4	225	331	
524550/21	5	5 No cropping details given	7.0	4	2+	3	53.2	199	116	
524551/21	6	6 No cropping details given	7.0	3	3	6	30.2	249	353	

If general fertiliser and lime recommendations have been requested, these are given on the following sheets.

The analytical methods used are as described in DEFRA Reference Book 427

The index values are determined from the AHDB Fertiliser Recommendations RB209 9th Edition.

Released by Nina Mansfield

On behalf of NRM Ltd

10/06/21

Date

NRM Coopers Bridge, Braziers Lane, Bracknell, Berkshire RG42 6NS Tel: +44 (0) 1344 886338 Fax: +44 (0) 1344 890972 Email: enquiries@nrm.uk.com www.nrm.uk.com

PAAG • Professional Agricultural Analysis Group

Contact : MR MIKE PALMER LAND RESEARCH ASSOCIATES LOCKINGTON HALL LOCKINGTON DERBY DE74 2RH Tel. : 01509 670570 H579	Client :	HOLE FARM	
Please quote the above code for all enquiries		Laboratory Reference	9
Sample Matrix : Agricultural Soil	Card	Number 758	314/21
		Date Received	04-Jun-21
		Date Reported	10-Jun-21

SOIL ANALYSIS REPORT

Laboratory	Field Details				Index		mg/l (Available)			
Sample Reference	No.	Name or O.S. Reference with Cropping Details	Soil pH	Ρ	К	Mg	Р	к	Mg	
524552/21	7	7 No cropping details given	7.3	3	2-	4	36.4	173	208	
524553/21	8	8 No cropping details given	6.9	3	2-	4	26.6	137	176	
524554/21	9	9 No cropping details given	6.8	3	2+	5	29.4	201	320	
524555/21	10	10 No cropping details given	6.6	3	3	6	35.8	302	365	

If general fertiliser and lime recommendations have been requested, these are given on the following sheets.

The analytical methods used are as described in DEFRA Reference Book 427

The index values are determined from the AHDB Fertiliser Recommendations RB209 9th Edition.

Released by Nina Mansfield

On behalf of NRM Ltd

10/06/21

Date

NRM Coopers Bridge, Braziers Lane, Bracknell, Berkshire RG42 6NS Tel: +44 (0) 1344 886338 Fax: +44 (0) 1344 890972 Email: enquiries@nrm.uk.com www.nrm.uk.com

NRM Laboratories is a division of Cawood Scientific Ltd, Coopers Bridge, Braziers Lane, Bracknell, Berkshire RG42 6NS Registered Number: 05655711

PAAG Professional Agricultural Analysis Group

MICRO NUTRIENT REPORT

DATE

10th June 2021

SAMPLES FROM HOLE FARM

MR MIKE PALMER LAND RESEARCH ASSOCIATES LOCKINGTON HALL LOCKINGTON DERBY DE74 2RH Tel: 01509 670570 Fax: 01509 670676

Reference: 75814/524546/21	Field Name: 1	Result	(*)	Deficient	Marginal	Target	Marginal	Excessive
Organic matter (LOI) %		4.9	1	OM level	data not ava	ilable for th	s crop	
			1					·
Reference: 75814/524547/21	Field Name: 2	Result	(*)	Deficient	Marginal	Target	Marginal	Excessive
Organic matter (LOI) %		4.5	1	OM level	data not ava	ilable for th	s crop	
Reference: 75814/524548/21	Field Name: 3	Result	(*)	Deficient	Marginal	Target	Marginal	Excessive
Organic matter (LOI) %		5.4	1	OM level	data not ava	ilable for th	s crop	
Reference: 75814/524549/21	Field Name: 4	Result	(*)	Deficient	Marginal	Target	Marginal	Excessive
Organic matter (LOI) %		5.1	1	OM level	data not ava	ilable for th	s crop	
Reference: 75814/524550/21	Field Name: 5	Result	(*)	Deficient	Marginal	Target	Marginal	Excessive
Organic matter (LOI) %		4.8	1	OM level	data not ava	ilable for th	s crop	
Reference: 75814/524551/21	Field Name: 6	Result	(*)	Deficient	Marginal	Target	Marginal	Excessive
Organic matter (LOI) %		5.4	1	OM level	data not ava	ilable for th	s crop	
Reference: 75814/524552/21	Field Name: 7	Result	(*)	Deficient	Marginal	Target	Marginal	Excessive
Organic matter (LOI) %		5.2	1	OM level	data not ava	ilable for th	s crop	
Reference: 75814/524553/21	Field Name: 8	Result	(*)	Deficient	Marginal	Target	Marginal	Excessive
Organic matter (LOI) %		6.2	1	OM level	data not ava	ilable for th	s crop	
		-		1				
Reference: 75814/524554/21	Field Name: 9	Result	(*)	Deficient	Marginal	Target	Marginal	Excessive
Organic matter (LOI) %		5.1	1	OM level	data not ava	ilable for th	s crop	
		-						,
Reference: 75814/524555/21	Field Name: 10	Result	(*)	Deficient	Marginal	Target	Marginal	Excessive
Organic matter (LOI) %		5.7	1	OM level	data not ava	ilable for th	s crop	

Notes (*)

(1) NRM considers Organic soils to contain between 10-20% organic material with Peaty soils containing over 20%. The optimum ranges for Organic Matter which have been set are dependent on the soil type and the cropping but these must be viewed as guidance values only.

Contact : MR MIKE PALMER LAND RESEARCH ASSOCIATES LOCKINGTON HALL LOCKINGTON DERBY DE74 2RH Tel. : 01509 670570 H579	Client :	HOLE FARM	
Please quote the above code for all enquiries		Laboratory Reference	3
Sample Matrix : Agricultural Soil	Card	Number 758	315/21
		Date Received	04-Jun-21
		Date Reported	10-Jun-21

SOIL ANALYSIS REPORT

Laboratory	Field Details				Index		mg/l (Available)			
Sample Reference	No.	Name or O.S. Reference with Cropping Details	Soil pH	Ρ	к	Mg	Р	к	Mg	
524556/21	1	11 No cropping details given	7.4	3	2+	4	41.8	185	214	
524557/21	2	12 No cropping details given	7.4	4	2-	4	48.2	171	191	
524558/21	3	13 No cropping details given	6.8	3	2+	4	29.0	189	194	

If general fertiliser and lime recommendations have been requested, these are given on the following sheets.

The analytical methods used are as described in DEFRA Reference Book 427

The index values are determined from the AHDB Fertiliser Recommendations RB209 9th Edition.

Released by Nina Mansfield

On behalf of NRM Ltd

10/06/21

Date

NRM Coopers Bridge, Braziers Lane, Bracknell, Berkshire RG42 6NS Tel: +44 (0) 1344 886338 Fax: +44 (0) 1344 890972 Email: enquiries@nrm.uk.com www.nrm.uk.com

NRM Laboratories is a division of Cawood Scientific Ltd, Coopers Bridge, Braziers Lane, Bracknell, Berkshire RG42 6NS Registered Number: 05655711

PAAG Professional Agricultural Analysis Group

MICRO NUTRIENT REPORT

DATE

10th June 2021

SAMPLES FROM HOLE FARM

MR MIKE PALMER LAND RESEARCH ASSOCIATES LOCKINGTON HALL LOCKINGTON DERBY DE74 2RH Tel: 01509 670570 Fax: 01509 670676

Reference: 75815/524556/21	Field Name: 11	Result	(*)	Deficient	Marginal	Target	Marginal	Excessive
Organic matter (LOI) %		5.9	1	OM level	data not ava	ilable for th	s crop	
			_					
Reference: 75815/524557/21	Field Name: 12	Result	(*)	Deficient	Marginal	Target	Marginal	Excessive
Organic matter (LOI) %		5.1	1	OM level	data not ava	ilable for th	s crop	
								,
Reference: 75815/524558/21	Field Name: 13	Result	(*)	Deficient	Marginal	Target	Marginal	Excessive
Organic matter (LOI) %		8.5	1	OM level	data not ava	ilable for th	s crop	

Notes (*)

(1) NRM considers Organic soils to contain between 10-20% organic material with Peaty soils containing over 20%. The optimum ranges for Organic Matter which have been set are dependent on the soil type and the cropping but these must be viewed as guidance values only.

ANALYTICAL REPORT										
Report Number Date Received Date Reported Project Reference	54993-21 04-JUN-2021 18-JUN-2021 TOPSOIL HOLE FARM		H579	MR MIKE PALI LAND RESEAR LOCKINGTON LOCKINGTON DERBY	MER RCH ASSOCIAT HALL	ES	Client HOLE I	FARM		
Order Number			1	DE74 2RH	1	1	1	1	-	
Laboratory Reference		ENV 60828	ENV 60829	ENV 60830	ENV 60831	ENV 60832	ENV 60833	ENV 60834		
Sample Reference		PIT 1 TOPSOIL	PIT 33 TOP SOIL	PIT 51 TOP SOIL	PIT 75 TOP SOIL	PIT 79 TOP SOIL	PIT 80 TOP SOIL	PIT 98 TOP SOIL		
Determinand	Unit	TOPSOIL	TOPSOIL	TOPSOIL	TOPSOIL	TOPSOIL	TOPSOIL	TOPSOIL		
pH (Value)		6.0	6.6	7.6	7.5	7.2	4.4	6.9		
Available Phosphorus	mg/l	29 (3)	28 (3)	42 (3)	35 (3)	34 (3)	48 (4)	37 (3)		
Available Potassium	mg/l	151 (2-)	152 (2-)	242 (3)	164 (2-)	193 (2+)	262 (3)	244 (3)		
Available Magnesium	mg/l	99 (2)	323 (5)	319 (5)	200 (4)	150 (3)	41 (1)	336 (5)		
Sand (2.00-0.063mm)	%	59	15	12	13	17	59	19		
Silt (0.063-0.002mm)	%	23	46	49	47	47	26	43		
Clay (<0.002mm)	%	18	39	39	40	36	15	38		
Total Nitrogen	% w/w	0.15	0.22	0.30	0.21	0.22	0.24	0.25		
Sulphur	mg/kg	320	366	481	333	403	408	439		
Stones 2-20mm	%	3.6	12.0	1.2	4.6	4.6	9.4	2.0		
Conductivity (Sat CaSO4)	uS/cm	2296	2103	2056	2049	2056	2445	2033		
Organic Matter by LOI	% w/w	3.3	5.1	6.3	5.1	4.8	5.1	5.9		
Organic Carbon	% w/w	1.9	3.0	3.7	3.0	2.8	3.0	3.4		
Neutralising Value as CaC03 equiv.	. % w/w	0.4	1.2	1.3	1.2	1.2	0.2	0.9		
Neutralising Value as CaO equiv.	% w/w	0.2	0.7	0.7	0.7	0.7	<0.1	0.5		
Water Soluble Boron	mg/l	1.0	2.0	2.2	1.2	1.8	0.8	1.8		
Calcium	mg/kg	2894	4750	6048	6198	5648	1794	4658		
Total Sulphate	mg/kg	485	544	753	510	552	717	608		
Easily Liberated Sulphide	mg/kg	<10	<10	<10	<10	<10	<10	<10		
Elemental Sulphur	mg/kg	<5	<5	<5	<5	<5	<5	<5		
Dry Matter	% w/w	81.5	84.2	82.7	81.2	78.4	77.4	80.9		
Stones 20-60mm	% w/w	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
Stones >60mm	% w/w	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
Organic Carbon by DUMAS	%	1.7	2.1	3.1	2.3	2.2	2.3	2.8		
Organic Matter [calculation]	%	2.9	3.7	5.3	4.0	3.7	3.9	4.8		

	ANALYTICAL REPORT												
Report Number	H579	MR MIKE PALM	MER	Client HOLE FARM									
Date Received	leceived 04-JUN-2021				LAND RESEARCH ASSOCIATES								
Date Reported	18-JUN-2021			LOCKINGTON HALL									
Project	SUBSOIL			LOCKINGTON									
Reference	HOLE FARM			DERBY									
Order Number				DE74 2RH									
Laboratory Reference		ENV 60835	ENV 60836	ENV 60837	ENV 60838	ENV 60839	ENV 60840	ENV 60841	ENV 60842	ENV 60843	ENV 60844		
		PIT 1 SUBS	PIT 1 SUBS	PIT 33 SUB	PIT 33 SUB	PIT 51 SUB	PIT 51 SUB	PIT 75 SUB	PIT 75 SUB	PIT 79 SUB	PIT 79 SUB		
Sample Reference		OIL 1	OIL 2	SOIL 1	SOIL 2	SOIL 1	SOIL 2	SOIL 1	SOIL 2	SOIL 1	SOIL 2		
Determinand	Unit	SUBSOIL	SUBSOIL	SUBSOIL	SUBSOIL	SUBSOIL	SUBSOIL	SUBSOIL	SUBSOIL	SUBSOIL	SUBSOIL		
pH (Value)		7.1	7.5	8.1	8.2	7.9	7.7	8.4	8.2	8.4	8.4		
Available Phosphorus	mg/l	<2.5 (0)	<2.5 (0)	<2.5 (0)	<2.5 (0)	7 (0)	10 (1)	<2.5 (0)	<2.5 (0)	<2.5 (0)	<2.5 (0)		
Available Potassium	mg/l	85 (1)	168 (2-)	187 (2+)	177 (2-)	105 (1)	128 (2-)	162 (2-)	163 (2-)	209 (2+)	279 (3)		
Available Magnesium	mg/l	343 (5)	467 (6)	1801 (9)	1657 (9)	684 (7)	1131 (8)	1011 (8)	889 (7)	852 (7)	1416 (8)		
Sand (2.00-0.063mm)	%	56	67	5	3	15	23	7	6	8	3		
Silt (0.063-0.002mm)	%	17	8	31	31	45	31	33	33	31	34		
Clay (<0.002mm)	%	27	25	64	66	40	46	60	61	61	63		
Total Nitrogen	% w/w	0.04	<0.02	0.05	0.05	0.10	0.09	0.04	0.04	0.05	0.04		
Sulphur	mg/kg	126	88	427	684	220	255	107	101	105	177		
Stones 2-20mm	%	0.4	0.1	0.6	11.6	2.2	7.6	19.2	23.1	19.7	29.7		
Conductivity (Sat CaSO4)	uS/cm	2024	2057	2408	2286	2062	2161	2012	1976	1991	2062		
Organic Matter by LOI	% w/w	1.6	1.1	2.8	3.0	3.0	3.2	2.6	2.7	2.8	2.5		
Organic Carbon	% w/w	0.9	0.6	1.6	1.7	1.8	1.8	1.5	1.6	1.6	1.5		
Neutralising Value as CaC03 equiv.	% w/w	0.2	0.2	1.7	2.6	0.7	0.9	1.2	1.1	1.4	2.0		
Neutralising Value as CaO equiv.	% w/w	0.1	0.1	1.0	1.4	0.4	0.5	0.7	0.6	0.8	1.1		
Water Soluble Boron	mg/l	0.2	0.2	0.8	0.9	0.9	0.8	0.9	1.1	0.6	0.4		
Calcium	mg/kg	2164	2392	5454	16079	3924	2865	5198	4821	5593	5092		
Total Sulphate	mg/kg	<200	<200	772	1434	388	469	<200	<200	<200	323		
Easily Liberated Sulphide	mg/kg	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10		
Elemental Sulphur	mg/kg	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5		
Dry Matter	% w/w	81.0	78.4	76.0	75.3	81.6	78.7	76.7	75.3	75.1	75.9		
Stones 20-60mm	% w/w	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
Stones >60mm	% w/w	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
Organic Carbon by DUMAS	%	0.7	0.4	0.6	0.5	1.1	1.1	0.5	0.5	0.5	0.4		
Organic Matter [calculation]	%	1.1	0.6	1.0	0.9	1.9	1.8	0.8	0.8	0.9	0.7		

ANALYTICAL REPORT										
Report Number	54995-21		H579	MR MIKE PAL	MER	Client HOLE FARM	ent HOLE FARM			
Date Received	04-JUN-2021	N-2021			RCH ASSOCIAT	ATES				
Date Reported	18-JUN-2021			LOCKINGTON	HALL					
Project	SUBSOIL			LOCKINGTON						
Reference	HOLE FARM			DERBY						
Order Number				DE74 2RH						
Laboratory Reference		ENV 60845	ENV 60846	ENV 60847	ENV 60848					
Oceanda Deferences		PIT 80 SUB	PIT 80 SUB	PIT 98 SUB	PIT 98 SUB					
Sample Reference		SOIL 1	SOIL 2	SOIL 1	SOIL 2					
Determinand	Unit	SUBSOIL	SUBSOIL	SUBSOIL	SUBSOIL					
pH (Value)		7.1	6.9	7.6	7.9					
Available Phosphorus	mg/l	3 (0)	<2.5 (0)	<2.5 (0)	<2.5 (0)					
Available Potassium	mg/l	94 (1)	164 (2-)	137 (2-)	187 (2+)					
Available Magnesium	mg/l	114 (3)	287 (5)	427 (6)	624 (7)					
Sand (2.00-0.063mm)	%	52	51	17	8					
Silt (0.063-0.002mm)	%	30	18	42	39					
Clay (<0.002mm)	%	18	31	41	53					
Total Nitrogen	% w/w	0.04	0.03	0.08	0.06					
Sulphur	mg/kg	101	102	185	136					
Stones 2-20mm	%	18.5	1.8	3.9	7.6					
Conductivity (Sat CaSO4)	uS/cm	2038	2020	2023	1983					
Organic Matter by LOI	% w/w	1.2	1.6	2.6	2.5					
Organic Carbon	% w/w	0.7	0.9	1.5	1.5					
Neutralising Value as CaC03 equiv.	% w/w	<0.1	0.5	0.6	0.5					
Neutralising Value as CaO equiv.	% w/w	<0.1	0.3	0.3	0.3					
Water Soluble Boron	mg/l	0.3	0.4	1.0	1.2					
Calcium	mg/kg	1694	2579	3799	3920					
Total Sulphate	mg/kg	<200	<200	386	<200					
Easily Liberated Sulphide	mg/kg	<10	<10	<10	<10					
Elemental Sulphur	mg/kg	<5	<5	<5	<5					
Dry Matter	% w/w	87.3	80.8	82.0	76.2					
Stones 20-60mm	% w/w	<0.1	<0.1	<0.1	<0.1					
Stones >60mm	% w/w	<0.1	<0.1	<0.1	<0.1					
Organic Carbon by DUMAS	%	0.5	0.4	0.8	0.7					
Organic Matter [calculation]	%	0.8	0.7	1.4	1.1					

Appendix B: Hole Farm Proposed Building and Car Park Layout

3.	THIS DRAWING SHOULD BE READ IN CONJUNCTION WITH ALL OTHER RELEVANT PROJECT
	INFORMATION.
1	THE PRINCIPAL DESIGNER / FEREDAY POLLARD SHALL BE NOTIFIED OF ANY ADDITIONAL

THE PRINCIPAL DESIGNER / FEREDAY POLLARD SHALL BE NOTIFIED OF ANY ADDITIONAL RISK(S) THAT HAVE NOT BEEN IDENTIFIED IN PROJECT INFORMATION. 5. DO NOT SCALE OFF THIS DRAWING. REQUEST DIMENSIONS IF NOT SHOWN.

6. THIS DRAWING IS ONLY FOR THE USE OF PARTIES TO WHICH IT HAS BEEN ISSUED BY FEREDAY POLLARD AND ONLY IN RELATION TO THE PROJECT AND THE PURPOSE FOR WHICH IT HAS BEEN ISSUED.

Surfaced path type B - 3m width tarmac with coloured surface dressing of natural angled stone chip Surfaced path type C - 3m width unsealed prime aggregate, with compacted 6mm to dust grey granite angled chip Surfaced path type D - 3m width prime aggregate with a wearing course of tar and chip, grey granite finish Surfaced path type E - 3m width tarmac with grey granite surface dressing

DNG 113

Hedge Existi

Scale 1:500@A3

DNG 113				
OVERED AREA CYCL 150sqm	E STORAGE	···	=======================================	
Existing	high pressure GAS MAIN			

EIA for afforestation	applica	ation by	Fc	orestry Engla	nd			
osed rides and glac ral grassland	les			Proposed ar woodland	nd existing	1		
osed rides and glac ies rich grassland	les			Proposed natural regeneration				
osed shrub				Proposed fe	ature plar	iting		
gerows				Existing tree	es			
ling footpath (PRoW	/)	R		Proposed tre	ees			
10m	15m		20r	n 25	m	30m		

		1			
)8	30/05/23	FOR PLANNING	VS	GH	JB
)7	09/05/23	FOR PLANNING	VS	GH	JB
)6	27/04/23	FOR APPROVAL	VS	GH	JB
)5	20/04/23	FOR APPROVAL	VS	GH	JB
)4	13/04/23	FOR APPROVAL	VS	GH	JB
)3	31/03/23	FOR APPROVAL	VS	GH	JB
)2	15/03/23	IDR FOR COMMENT	VS	GH	JB
01	03/02/23	PLANNING DRAFT FOR COMMENT	EB	GH	JB
v	Date	Description	Drawn	Chkd	Арр
				-	

Client	
FORESTRY	ENGLAND

Scale		Date Created	ł	
1: 250@A1/1:50	03-02-2	3		
Drawn By	Checked By		Approved	l By
EB	GH		JB	
Status				Suita
FOR PLANNIN	G			

Alternative Reference

Suitability Code DrawingNumber 375-FP-02-ZZ-DRG-A-000110

Revision P08

Sheet Size A1 841 x 594

6313_101-CARPARK

GENERAL NOTES

- 1. ALL DIMENSIONS ARE IN MILLIMETRES UNLESS OTHERWISE STATED. LEVELS ARE SHOWN IN METERS ABOVE DATUM LEVEL. ANY DISCREPANCIES SHALL BE REPORTED TO FEREDAY POLLARD.
- 2. THIS DRAWING MAY INCORPORATE SURVEY INFORMATION SUPPLIED TO FEREDAY POLLARD BY OTHERS. RESPONSIBILITY FOR THE ACCURACY OF THIS INFORMATION REMAINS WITH THE ORIGINATOR.
- 3. THIS DRAWING SHOULD BE READ IN CONJUNCTION WITH ALL OTHER RELEVANT PROJECT INFORMATION.
- 4. THE PRINCIPAL DESIGNER / FEREDAY POLLARD SHALL BE NOTIFIED OF ANY ADDITIONAL
- RISK(S) THAT HAVE NOT BEEN IDENTIFIED IN PROJECT INFORMATION. 5. DO NOT SCALE OFF THIS DRAWING. REQUEST DIMENSIONS IF NOT SHOWN.
- 6. THIS DRAWING IS ONLY FOR THE USE OF PARTIES TO WHICH IT HAS BEEN ISSUED BY FEREDAY POLLARD AND ONLY IN RELATION TO THE PROJECT AND THE PURPOSE FOR WHICH IT HAS BEEN ISSUED.

KEY

- Planning application boundary
- Proposed buildings
- Proposed covered areas
- Surfaced path type A 3.5m width prime aggregate with a wearing course of tar and chip, grey granite finish Surfaced path type B - 3m width tarmac with coloured surface dressing of natural angled stone chip Surfaced path type C - 3m width unsealed prime aggregate, Existing footpath (PRoW) with compacted 6mm to dust grey granite angled chip

DWG 000111

OPEN-SIDED VISITOR SHELTER

└ - - + +j'-

- Surfaced path type D 3m width prime aggregate with a wearing course of tar and chip, grey granite finish Surfaced path type E - 3m width tarmac with grey granite surface dressing
- Hedgerows

	~1
/	
	Device Title
	HOLE FARM
rereday pollard	
architecture landscape design	
30 King's Bench Street, London, SE1 0QX. T +44 (0)20 7253 0303	Drawing Title
w : www.fereday-pollard.co.uk e : admin@fereday-pollard.co.uk ⓒ Fereday Pollard Architects Ltd 2019	PROPOSED CAR PARK
	LOCATION PLAN
Date Created በ@A1/1·10በበ@Δ3 በ3_02 23	
By Checked By Approved By	Alternative Reference
GH JB	
	y Code DrawingNumber Revision

Appendix C: Hole Farm Catchment Plan Sketch

	+	V	/// . 5			
<i> X</i> <i> </i>	S (99.7m)		Thatched Cottage			> > > > > > > > > > > > > > > > > > >
		Coombe				
	Coombe Green			The Auirrels		
	Coombe					
Foxbulley Wood					A	
	NG LAS					
	Foxburgers	X + 103.3m	omthe Wood	\sum_{n}		
				$ \langle X \rangle $		
	Tangle Wood		<i>S \ \ \</i>			
	(+) 79.9m				Pond	
	Beredens			HA		
					Hm	
	Mast 7					
		Falls (Um)				
				Drain		
				$\left\langle \right\rangle$		
Pond						
				\leq		
	Par PR		Ganity			
he vvoorfand						
						Panel's Share
						Pond
	S		Served the served served and the served served served served and the served serve		e e e e e e e e e e e e e e e e e e e	
				52.6	\$0 ¹⁰	
5	Pol		20			
LEGEND						P
C. R	ATCHMENT 1 (PART OF FARI EGION TO WEST OF HOLE F/	M ACCESS, TREE NURS ARM LANE); AREA - 231	ERY & ASSOCIATED 930 SQ.M	BUILDINGS AND		
G	REENFIELD RUN-OFF RATE - LLOWABLE FLOW RATE - 72.	- 3.119 LITRES/SEC/HEC 3 LITRES/SEC.	CTARES			
G A	ATCHMENT 2 (PARKING LOT REENFIELD RUN-OFF RATE - LLOWABLE FLOW RATE - 48.	AND ALL ABILITIES ACC - 3.116 LITRES/SEC/HEC 2 LITRES/SEC.	CESS TRAIL); AREA - CTARES	154740 SQ.M.	Gantry	
G	ATCHMENT 3 (PART OF ACC REENFIELD RUN-OFF RATE -	ESS ROAD); AREA - 137 - 3.116 LITRES/SEC/HEC	2 SQ.M. CTARES			
Al E: A	XISTING CATCHMENT AREA RRANGEMENT (NO ATTENUA	DRAINED THROUGH RE	ETAINED EXISTING D	RAINAGE		
A	PPLICATION BOUNDARY	,				
Copyright: Contains Environment Ag and/or database right.	gency information. © Environmer	ht Agency				
Contains Urdnance Survey data. © C	rown copyright and database rig			5		

Appendix D: Greenfield Run-off Rate Calculation

COWI UK Limited		Page 1
Kelvin House		
RTC Business Park, London Rd		Car and
Derby DE24 8UP		Mirco
Date 11/04/2023 11:09	Designed by AHSI	Desinado
File	Checked by	Diamage
Innovyze	Source Control 2020.1.3	1

ICP SUDS Mean Annual Flood

Input

Return	Period	(ye	ars)	1		Soil	0.45	50
	Area		(ha)	15.474		Urban	0.00	00
	SA	AR	(mm)	600	Region	Number	Region	6

Results 1/s

QBAR Rural 56.8 QBAR Urban 56.8 Q1 year 48.2 Q1 year 48.2 Q30 years 128.6 Q100 years 181.1

COWI UK Limited		Page 1			
Kelvin House					
RTC Business Park, London Rd		the second			
Derby DE24 8UP		Mirro			
Date 11/04/2023 11:11	Designed by AHSI	Drainago			
File	Checked by	Diamaye			
Innovyze	Source Control 2020.1.3				
ICP SUDS Mean Annual Flood					
Input					

Return Period (years)1Soil0.450Area (ha)0.137Urban0.000SAAR (mm)600 Region Number Region 6

Results 1/s

QBAR Rural 0.5 QBAR Urban 0.5

Q1 year 0.4

Q1 year 0.4 Q30 years 1.1 Q100 years 1.6

©1982-2020 Innovyze

COWI UK Limited		Page 1
Kelvin House		
RTC Business Park, London Rd		The second
Derby DE24 8UP		Mirco
Date 11/04/2023 11:10	Designed by AHSI	Desinado
File	Checked by	Diamaye
Innovyze	Source Control 2020.1.3	L

ICP SUDS Mean Annual Flood

Input

Return	Period	(ye	ars)	1		Soil	0.45	50
	Area		(ha)	23.193		Urban	0.00	00
	SA	AR	(mm)	600	Region	Number	Region	6

Results 1/s

QBAR Rural 85.1 QBAR Urban 85.1 Q1 year 72.3 Q1 year 72.3 Q30 years 192.8 Q100 years 271.4

Appendix E: Hole Farm Drainage Plan

Appendix F: Drainage Network Result Summary

COWI UK Limited		Page 1					
Kelvin House							
RTC Business Park, London Rd		Constant of the second					
Derby DE24 8UP		Mirco					
Date 11/04/2023 17:12	Designed by AHSI	Dcainago					
File All abilities access trail Rev 2.MDX	Checked by	Diamage					
Innovyze	Network 2020.1.3						
STORM SEWER DESIGN by the Modified Rational Method							
Design Criteria for Storm							
Pipe Sizes LT	TC pipes Manhole Sizes LTC manholes						
FSR Rainfall Model - England and Wales Return Period (years) 1 Foul Sewage (l/s/ha) 0.000 Maximum Backdrop Height (m) 1.500 M5-60 (mm) 20.000 Volumetric Runoff Coeff. 1.000 Min Design Depth for Optimisation (m) 1.200 Ratio R 0.400 PIMP (%) 100 Min Vel for Auto Design only (m/s) 1.00 Maximum Rainfall (mm/hr) 300 Add Flow / Climate Change (%) 20 Min Slope for Optimisation (1:X) 500 Maximum Time of Concentration (mins) 30 Minimum Backdrop Height (m) 0.200 Designed with Level Soffits							
Network Design Table for Storm							
<pre>« - Indicates pipe capacity < flow</pre>							
PN Length Fall Slope I.Area T.E. Base k n HYD DIA Section Type Auto (m) (m) (1:X) (ha) (mins) Flow (l/s) (mm) SECT (mm) Design							
Network Results Table							
PN Rain T.C. US/IL Σ I.Area Σ Base Foul Add Flow Vel Cap Flow (mm/hr) (mins) (m) (ha) Flow (l/s) (l/s) (l/s) (m/s) (l/s) (l/s)							
©1982-2020 Innovyze							
COWI UK Limited		Page 2					
---	------------------	---------------------------					
Kelvin House							
RTC Business Park, London Rd		Contraction of the second					
Derby DE24 8UP		Mirco					
Date 11/04/2023 17:12	Designed by AHSI	Dcainago					
File All abilities access trail Rev 2.MDX	Checked by	Diamage					
Innovyze	Network 2020.1.3						

PN	Length	Fall	Slope	I.Area	T.E.	Ba	ase	k	n	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(l/s)	(mm)		SECT	(mm)		Design
S4.000	12.094	0.024	503.9	0.002	5.00		0.0		0.050	3 \=/	500	1:3 Swale	a
S4.001	10.731	0.406	26.4	0.003	0.00		0.0		0.050	3 \=/	500	1:3 Swale	ř
S4.002	62.507	3.420	18.3	0.153	0.00		0.0		0.050	3 \=/	500	1:3 Swale	ă.
S4.003	27.674	1.360	20.3	0.085	0.00		0.0		0.050	3 \=/	500	1:3 Swale	Ū,
S4.004	11.433	0.230	49.7	0.000	0.00		0.0	0.600		0	300	Pipe/Conduit	- Ē
S4.005	38.817	1.520	25.5	0.020	0.00		0.0		0.050	3 \=/	500	1:3 Swale	à
S4.006	11.226	0.430	26.1	0.000	0.00		0.0	0.600		0	300	Pipe/Conduit	ď
S4.007	30.597	0.569	53.8	0.016	0.00		0.0		0.050	3 \=/	500	1:3 Swale	ā
S4.008	58.391	0.586	99.6	0.021	0.00		0.0		0.050	3 \=/	500	1:3 Swale	Ū.
S4.009	28.757	0.058	500.0	0.012	0.00		0.0		0.050	3 \=/	500	1:3 Swale	ē

n/hr) (m 52.27 5 51.81 5	ins) 5.54	(m)	(ha)	Flow (l/s)	(1/s)	(1/s)	(m/s)	(l/s)	(l/s)
52.27 s	5.54	59.010	0 000						
51.81 5			0.002	0.0	0.0	0.1	0.37	375.0	0.5
	5.65	58.986	0.005	0.0	0.0	0.2	1.64	1637.3	1.1
49.68 (6.18	58.580	0.158	0.0	0.0	5.7	1.97	1969.0	34.1
48.75 0	6.42	55.160	0.243	0.0	0.0	8.6	1.87	1866.1	51.4
48.44 6	6.51	53.800	0.243	0.0	0.0	8.6	2.24	158.0	51.4
47.08 0	6.90	53.570	0.263	0.0	0.0	8.9	1.67	1665.7	53.7
46.88 (6.96	52.050	0.263	0.0	0.0	8.9	3.09	218.4	53.7
45.44 7	7.40	51.620	0.279	0.0	0.0	9.1	1.15	1147.9	54.9
42.13 8	8.56	51.051	0.300	0.0	0.0	9.1	0.84	843.3	54.9
39.19 9	9.83	50.465	0.312	0.0	0.0	9.1	0.38	376.4	54.9
	18.75 18.44 17.08 16.88 15.44 12.13 39.19	18.75 6.42 18.44 6.51 17.08 6.90 16.88 6.96 15.44 7.40 12.13 8.56 19.19 9.83	18.75 6.42 55.160 18.44 6.51 53.800 17.08 6.90 53.570 16.88 6.96 52.050 15.44 7.40 51.620 12.13 8.56 51.051 19.19 9.83 50.465	18.75 6.42 55.160 0.243 18.44 6.51 53.800 0.243 17.08 6.90 53.570 0.263 16.88 6.96 52.050 0.263 15.44 7.40 51.620 0.279 12.13 8.56 51.051 0.300 19.19 9.83 50.465 0.312	18.75 6.42 55.160 0.243 0.0 18.44 6.51 53.800 0.243 0.0 17.08 6.90 53.570 0.263 0.0 16.88 6.96 52.050 0.263 0.0 15.44 7.40 51.620 0.279 0.0 12.13 8.56 51.051 0.300 0.0 19.19 9.83 50.465 0.312 0.0	18.75 6.42 55.160 0.243 0.0 0.0 18.44 6.51 53.800 0.243 0.0 0.0 17.08 6.90 53.570 0.263 0.0 0.0 16.88 6.96 52.050 0.263 0.0 0.0 15.44 7.40 51.620 0.279 0.0 0.0 12.13 8.56 51.051 0.300 0.0 0.0 19.19 9.83 50.465 0.312 0.0 0.0	18.75 6.42 55.160 0.243 0.0 0.0 8.6 18.44 6.51 53.800 0.243 0.0 0.0 8.6 17.08 6.90 53.570 0.263 0.0 0.0 8.9 16.88 6.96 52.050 0.263 0.0 0.0 8.9 15.44 7.40 51.620 0.279 0.0 0.0 9.1 12.13 8.56 51.051 0.300 0.0 0.0 9.1 19.19 9.83 50.465 0.312 0.0 0.0 9.1	18.75 6.42 55.160 0.243 0.0 0.0 8.6 1.87 18.44 6.51 53.800 0.243 0.0 0.0 8.6 2.24 17.08 6.90 53.570 0.263 0.0 0.0 8.9 1.67 16.88 6.96 52.050 0.263 0.0 0.0 8.9 3.09 15.44 7.40 51.620 0.279 0.0 0.0 9.1 1.15 12.13 8.56 51.051 0.300 0.0 0.0 9.1 0.84 19.19 9.83 50.465 0.312 0.0 0.0 9.1 0.38	18.756.4255.1600.2430.00.08.61.871866.118.446.5153.8000.2430.00.08.62.24158.017.086.9053.5700.2630.00.08.91.671665.716.886.9652.0500.2630.00.08.93.09218.415.447.4051.6200.2790.00.09.11.151147.912.138.5651.0510.3000.00.09.10.84843.339.199.8350.4650.3120.00.09.10.38376.4

COWI UK Limited		Page 3
Kelvin House		
RTC Business Park, London Rd		Constanting of the
Derby DE24 8UP		Mirco
Date 11/04/2023 17:12	Designed by AHSI	Desinado
File All abilities access trail Rev 2.MDX	Checked by	Diamaye
Innovyze	Network 2020.1.3	i.

PN	Length	Fall	Slope	I.Area	T.E.	Ba	ase	k	n	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(l/s)	(mm)		SECI	(mm)		Design
S4.010	36.716	0.073	500.0	0.016	0.00		0.0		0.050	3 \=	/ 500	1:3 Swale	æ
S4.011	39.046	0.078	500.0	0.015	0.00		0.0		0.050	3 \=	/ 500	1:3 Swale	ě
S4.012	56.611	0.113	501.0	0.024	0.00		0.0		0.050	3 \=	/ 500	1:3 Swale	ř
S4.013	6.980	1.100	6.3	0.000	0.00		0.0	0.600		(o 300	Pipe/Conduit	<u> </u>
S4.014	21.591	0.814	26.5	0.011	0.00		0.0	0.600			o 300	Pipe/Conduit	ē
S4.015	13.977	0.047	300.0	0.000	0.00		0.0	0.600		(o 300	Pipe/Conduit	ě
S5.000	28.387	0.668	42.5	0.000	5.00		0.0		0.050	3 \=	/ 500	1:3 Swale	ď
S4.016	21.218	0.042	500.0	0.040	0.00		0.0		0.050	3 \=	/ 500	1:3 Swale	ð

PN	Rain	T.C.	US/IL	Σ I.Area	ΣΒα	ise	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow ((l/s)	(l/s)	(l/s)	(m/s)	(l/s)	(1/s)
C4 010	26 11	11 /5	50 407	0 227		0 0	0 0	0.1	0 20	276 5	54 0
54.010	30.11	11.45	50.407	0.327		0.0	0.0	9.1	0.50	3/0.5	54.9
S4.011	. 33.38	13.18	50.334	0.342		0.0	0.0	9.1	0.38	376.5	54.9
S4.012	30.18	15.69	50.256	0.366		0.0	0.0	9.1	0.38	376.1	54.9
S4.013	30.16	15.71	50.143	0.366		0.0	0.0	9.1	6.28	443.9	54.9
S4.014	30.03	15.83	49.043	0.378		0.0	0.0	9.1	3.06	216.6	54.9
S4.015	29.74	16.09	48.229	0.378		0.0	0.0	9.1	0.90	63.8	54.9
S5.000	53.02	5.37	48.850	0.000		0.0	0.0	0.0	1.29	1291.3	0.0
S4.016	28.75	17.03	48.182	0.417		0.0	0.0	9.1	0.38	376.4	54.9
				©1982-2	2020 I	Innov	yze				

COWI UK Limited		Page 4
Kelvin House		
RTC Business Park, London Rd		Contraction of the second
Derby DE24 8UP		Mirco
Date 11/04/2023 17:12	Designed by AHSI	Dcainago
File All abilities access trail Rev 2.MDX	Checked by	Diamaye
Innovyze	Network 2020.1.3	

PN	Length	Fall	Slope	I.Area	T.E.	Base	k	n	HYD	DIA	Section Typ	e Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow (l/s)	(mm)		SECT	(mm)		Design
S4.017	46.228	1.176	39.3	0.110	0.00	0.0		0.050	3 \=/	500	1:3 Swal	.e 🔐
S4.018	74.919	1.050	71.4	0.128	0.00	0.0		0.050	3 \=/	500	1:3 Swal	.e 🖌
S4.019	69.701	0.139	500.0	0.094	0.00	0.0		0.050	3 \=/	500	1:3 Swal	.e 🖌
S4.020	50.806	0.102	500.0	0.067	0.00	0.0		0.050	3 \=/	500	1:3 Swal	.e 🖌
S4.021	36.232	0.072	500.0	0.046	0.00	0.0		0.050	3 \=/	500	1:3 Swal	.e 🖌
S4.022	33.312	0.466	71.5	0.042	0.00	0.0		0.050	3 \=/	500	1:3 Swal	.e 🦷
S4.023	21.877	0.591	37.0	0.013	0.00	0.0		0.050	3 \=/	500	1:3 Swal	.e
S6.000	45.897	1.619	28.3	0.095	5.00	0.0		0.050	3 \=/	500	1:3 Swal	.e 💣
S6.001	44.057	1.290	34.2	0.110	0.00	0.0		0.050	3 \=/	500	1:3 Swal	.e 💣

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow	
	(mm/hr)	(mins)	(m)	(ha)	Flow (l/s)	(l/s)	(1/s)	(m/s)	(l/s)	(l/s)	
C4 017	20 10	17 60	10 110	0 527	0.0	0 0	10 7	1 24	1242 6	61 1	
54.017	20.10	10.00	40.140	0.527	0.0	0.0	10.7	1.04	1342.0	04.4	
54.018	27.03	18.82	46.964	0.655	0.0	0.0	12.8	1.00	996.5	/6./	
S4.019	24.61	21.94	45.914	0.749	0.0	0.0	13.3	0.38	376.5	79.9	
S4.020	23.14	24.19	45.774	0.816	0.0	0.0	13.6	0.38	376.5	81.8	
S4.021	22.24	25.79	45.673	0.862	0.0	0.0	13.8	0.38	376.4	83.1	
S4.022	21.94	26.35	45.600	0.905	0.0	0.0	14.3	1.00	995.6	86.0	
S4.023	21.81	26.61	45.134	0.918	0.0	0.0	14.4	1.38	1383.5	86.7	
S6.000	52.51	5.48	47.703	0.095	0.0	0.0	3.6	1.58	1581.0	21.6	
S6.001	50.39	5.99	46.084	0.205	0.0	0.0	7.5	1.44	1440.4	44.8	
				©1982-2	2020 Innov	vze					

COWI UK Limited		Page 5
Kelvin House		
RTC Business Park, London Rd		Con and
Derby DE24 8UP		Mirco
Date 11/04/2023 17:12	Designed by AHSI	Desinado
File All abilities access trail Rev 2.MDX	Checked by	Diamage
Innovyze	Network 2020.1.3	

PN	Length	Fall	Slope	I.Area	T.E.	Base	k	n	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow (1/	s) (mm)		SECT	(mm)		Design
S6.002	38.071	0.076	500.0	0.104	0.00	0	.0	0.050	3 \=/	500	1:3 Swale	æ
S6.003	48.368	0.097	500.0	0.149	0.00	0	.0	0.050	3 \=/	500	1:3 Swale	ă I
S6.004	38.927	0.078	500.0	0.022	0.00	0	.0	0.050	3 \=/	500	1:3 Swale	ď
S4.024	8.435	0.374	22.6	0.000	0.00	0	.0 0.600		0	500	Pipe/Conduit	•
s7.000	18.988	0.380	50.0	0.238	5.00	0	.0	0.050	3 \=/	500	1:3 Swale	a
S7.001	23.741	0.610	38.9	0.242	0.00	0	.0	0.050	3 \=/	500	1:3 Swale	<u> </u>
S7.002	14.257	0.170	83.9	0.201	0.00	0	.0	0.050	3 \=/	500	1:3 Swale	ř
S7.003	6.011	0.880	6.8	0.000	0.00	0	.0 0.600		0	300	Pipe/Conduit	ď

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow	
	(mm/hr)	(mins)	(m)	(ha)	Flow (l/s)	(l/s)	(1/s)	(m/s)	(1/s)	(1/s)	
56 002	44 59	7 68	44 794	0 309	0 0	0 0	10 0	0 38	376 5	597	
S6.003	39.21	9.82	44.718	0.458	0.0	0.0	13.0	0.38	376.5	77.8	
S6.004	35.95	11.54	44.621	0.480	0.0	0.0	13.0	0.38	376.5	77.8	
a 4 . 00 4	01 70	0.6.64	44 540	1 007	0.0	0 0	00.0	4 50	0.01 0	101 0	
\$4.024	21.79	26.64	44.543	1.397	0.0	0.0	22.0	4.59	901.0	131.9	
S7.000	53.47	5.27	54.690	0.238	0.0	0.0	9.2	1.19	1190.8	55.2	
S7.001	52.18	5.56	54.310	0.480	0.0	0.0	18.1	1.35	1349.3	108.6	
s7.002	51.10	5.82	53.700	0.681	0.0	0.0	25.1	0.92	919.2	150.8	
S7.003	51.03	5.83	53.530	0.681	0.0	0.0	25.1	6.05	427.8	150.8	
				©1982-2	2020 Innov	yze					

COWI UK Limited		Page 6
Kelvin House		
RTC Business Park, London Rd		
Derby DE24 8UP		Mirco
Date 11/04/2023 17:12	Designed by AHSI	Draipago
File All abilities access trail Rev 2.MDX	Checked by	Diamage
Innovyze	Network 2020.1.3	

	PN	Length	Fall	Slope	I.Area	T.E.	Ba	ase	k	n	HYD	DIA	Section Type	Auto
		(m)	(m)	(1:X)	(ha)	(mins)	Flow	(l/s)	(mm)		SECT	(mm)		Design
s7	.004	33.406	0.454	73.6	0.033	0.00		0.0	0.600		0	375	Pipe/Conduit	_
s7	1.005	15.986	0.586	27.3	0.000	0.00		0.0	0.600		0	375	Pipe/Conduit	ň
S7	006	17.535	0.877	20.0	0.057	0.00		0.0		0.050	3 \=/	500	1:3 Swale	ě
S7	1.007	4.035	0.040	100.0	0.000	0.00		0.0	0.600		0	375	Pipe/Conduit	- Č
s7	.008	57.935	1.138	50.9	0.000	0.00		0.0		0.050	3 \=/	500	1:3 Swale	ð
S8	3.000	66.926	1.360	49.2	0.016	5.00		0.0		0.045	3 \=/	500	1:3 Swale	ð
S8	8.001	5.845	0.060	97.4	0.000	0.00		0.0		0.050	0	500	Pipe/Conduit	ď
SS	000.	33.262	0.978	34.0	0.086	5.00		0.0		0.050	3 \=/	500	1:3 Swale	ð

mm/hr) (mins) (m) 49.98 6.10 52.575	(ha) Flow (1/s	s) (1/s) (1/s)	(m/s)	(l/s) (l/s)
49.98 6.10 52.575	0.714 0			
40 60 6 40 50 404		.0 0.0 25	.8 2.11	233.5 154.7
49.69 6.17 52.121	0.714 0	0.0 25	.8 3.48	384.5 154.7
49.10 6.33 51.535	0.772 0	0.0 27	.4 1.88	1882.3 164.2
48.96 6.37 50.658	0.772 0	0.0 27	.4 1.81	200.1 164.2
46.13 7.18 50.618	0.772 0	0 0.0 27	.4 1.18	1179.8 164.2
51.02 5.84 52.110	0.016 0	0.0 0	.6 1.33	1333.3 3.5
50.25 6.03 50.750	0.016 0	0.0 0.0	.6 0.51	99.5 3.5
52.94 5.38 53.080	0.086 0	.0 0.0 3	.3 1.44	1443.6 19.7
52	.94 5.38 <mark>53.080</mark>	.94 5.38 53.080 0.086 0.	.94 5.38 53.080 0.086 0.0 0.0 3	.94 5.38 53.080 0.086 0.0 0.0 3.3 1.44

COWI UK Limited		Page 7
Kelvin House		
RTC Business Park, London Rd		Con and
Derby DE24 8UP		Mirco
Date 11/04/2023 17:12	Designed by AHSI	Desinado
File All abilities access trail Rev 2.MDX	Checked by	Diamage
Innovyze	Network 2020.1.3	

PN	Length	Fall	Slope	I.Area	T.E.	Ba	se	k	n	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(l/s)	(mm)		SECT	(mm)		Design
S9.001	32.990	0.970	34.0	0.049	0.00		0.0		0.050	3 \=/	500	1:3 Swale	æ
S9.002	12.231	0.383	31.9	0.029	0.00		0.0		0.050	3 \=/	500	1:3 Swale	ď
S10.000	43.637	0.582	75.0	0.072	5.00		0.0		0.050	3 \=/	500	1:3 Swale	ð
S9.003	14.946	0.048	311.4	0.000	0.00		0.0	0.600		0	300	Pipe/Conduit	0
S8.002	30.992	0.500	62.0	0.017	0.00		0.0		0.045	3 \=/	600	1:3 Swale	ď
S8.003	47.825	0.710	67.4	0.021	0.00		0.0		0.045	3 \=/	600	1:3 Swale	-

<u>Network Results Table</u>

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (l/s)	Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
S9.001 S9.002	51.32 50.76	5.76 5.90	52.102 51.131	0.134 0.163	0.0	0.0	5.0 6.0	1.44 1.49	1443.6 1489.6	29.8 35.9
s10.000	51.38	5.75	51.330	0.072	0.0	0.0	2.7	0.97	972.1	16.1
S9.003	49.65	6.18	50.748	0.236	0.0	0.0	8.5	0.89	62.6	50.7
S8.002 S8.003	46.66 42.62	7.02 8.37	50.690 50.190	0.269 0.289	0.0	0.0	9.1 9.1	0.61 0.59	96.9 92.9	54.3 54.3

COWI UK Limited		Page 8
Kelvin House		
RTC Business Park, London Rd		Concerning of the
Derby DE24 8UP		Mirco
Date 11/04/2023 17:12	Designed by AHSI	Desinado
File All abilities access trail Rev 2.MDX	Checked by	Diamage
Innovyze	Network 2020.1.3	

PN	Length	Fall	Slope	I.Area	T.E.	Base	k	n	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow (l/s)	(mm)		SECT	(mm)		Design
s7.009	59.764	0.803	74.4	0.286	0.00	0.0		0.050	3 \=/	500	1:3 Swale	A
S7.010	68.938	0.527	130.8	0.308	0.00	0.0		0.050	3 \=/	500	1:3 Swale	ā
s7.011	39.773	0.366	108.7	0.169	0.00	0.0		0.050	3 \=/	500	1:3 Swale	ě
S11.000	58.130	2.010	28.9	0.063	5.00	0.0		0.050	3 \=/	500	1:3 Swale	ď
S11.001	56.438	0.982	57.5	0.110	0.00	0.0		0.050	3 \=/	500	1:3 Swale	- The second sec
S11.002	65.480	0.520	126.0	0.136	0.00	0.0		0.050	3 \=/	500	1:3 Swale	- The second sec
S11.003	15.676	0.193	81.1	0.037	0.00	0.0		0.050	3 \=/	500	1:3 Swale	- The second sec
S11.004	24.117	0.080	301.5	0.064	0.00	0.0		0.050	3 \=/	500	1:3 Swale	-
S11.005	8.084	0.081	100.0	0.000	0.00	0.0	0.600		0	500	Pipe/Conduit	ě

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow		
	(mm/hr)	(mins)	(m)	(ha)	Flow (l/s)	(l/s)	(1/s)	(m/s)	(l/s)	(1/s)		
\$7 009	40 13	939	49 480	1 347	0 0	0 0	39 0	0 98	975 7	234 2		
s7.010	36.99	10.96	48.677	1.655	0.0	0.0	44.2	0.74	736.0	265.3		
S7.011	35.56	11.78	48.150	1.824	0.0	0.0	46.8	0.81	807.5	281.1		
S11.000	51.93	5.62	51.650	0.063	0.0	0.0	2.4	1.57	1565.3	14.1		
S11.001	48.60	6.47	49.640	0.173	0.0	0.0	6.1	1.11	1110.4	36.4		
S11.002	43.88	7.92	48.658	0.308	0.0	0.0	9.8	0.75	749.9	58.6		
S11.003	43.09	8.20	48.138	0.345	0.0	0.0	10.7	0.93	934.8	64.5		
S11.004	40.95	9.03	47.945	0.410	0.0	0.0	12.1	0.48	484.8	72.7		
S11.005	40.81	9.09	47.865	0.410	0.0	0.0	12.1	2.17	426.6	72.7		
	©1982-2020 Innovyze											

COWI UK Limited		Page 9
Kelvin House		
RTC Business Park, London Rd		Contraction of the second
Derby DE24 8UP		Mirco
Date 11/04/2023 17:12	Designed by AHSI	Dcainago
File All abilities access trail Rev 2.MDX	Checked by	Diamaye
Innovyze	Network 2020.1.3	

Network	Design	Table	for	Storm

PN	Length	Fall	Slope	I.Area	T.E.	Base	k (mm)	n	HYD		Section Type	Auto
	(m)	(m)	(1:X)	(na)	(mins)	FIOW (I/S)	(1111)		SECT	(1111)		Design
S7.012	11.441	0.286	40.0	0.000	0.00	0.0	0.600		0	500	Pipe/Conduit	A
S7.013	12.272	0.332	37.0	0.152	0.00	0.0	0.600		0	500	Pipe/Conduit	- Ā
S7.014	14.440	0.334	43.2	0.000	0.00	0.0	0.600		0	500	Pipe/Conduit	- Ē
S7.015	12.208	0.024	500.0	0.000	0.00	0.0	0.600		0	500	Pipe/Conduit	0
S12.000	31.056	1.296	24.0	0.013	5.00	0.0		0.050	3 \=/	500	1:3 Swale	•
S7.016	61.681	2.089	29.5	0.263	0.00	0.0		0.050	3 \=/	500	1:3 Swale	æ
S7.017	44.142	0.088	500.0	0.016	0.00	0.0		0.050	3 \=/	600	1:3 Swale	ď

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow (l/s)	(l/s)	(1/s)	(m/s)	(1/s)	(l/s)
S7.012	35.47	11.83	47.784	2.234	0.0	0.0	57.2	3.44	675.9	343.3
S7.013	35.37	11.89	47.498	2.387	0.0	0.0	61.0	3.58	702.9	365.8
S7.014	35.25	11.96	47.166	2.387	0.0	0.0	61.0	3.31	650.1	365.8
S7.015	34.91	12.17	46.833	2.387	0.0	0.0	61.0	0.96	189.4«	365.8
S12.000	53.31	5.30	48.104	0.013	0.0	0.0	0.5	1.72	1719.6	2.9
S7.016	33.89	12.84	46.808	2.662	0.0	0.0	65.1	1.55	1549.1	390.9
S7 017	31.28	14.76	44.719	2.677	0.0	0.0	65.1	0.38	401.1	390.9

COWI UK Limited		Page 10
Kelvin House		
RTC Business Park, London Rd		Contraction of the second
Derby DE24 8UP		Mirco
Date 11/04/2023 17:12	Designed by AHSI	Dcainago
File All abilities access trail Rev 2.MDX	Checked by	Diamaye
Innovyze	Network 2020.1.3	1

PN	Length	Fall	Slope	I.Area	T.E.	Base	k	n	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow (l/s)	(mm)		SECT	(mm)		Design
S7.018	26.769	0.054	500.0	0.010	0.00	0.0		0.050	3 \=/	600	1:3 Swale	æ
S7.019	23.405	0.174	134.5	0.007	0.00	0.0		0.050	3 \=/	600	1:3 Swale	- The second sec
S7.020	44.681	0.234	190.9	0.015	0.00	0.0		0.050	3 \=/	500	1:3 Swale	•
S13.000	41.339	0.083	500.0	0.015	5.00	0.0		0.050	3 \=/	500	1:3 Swale	A
S13.001	54.160	1.159	46.7	0.019	0.00	0.0		0.050	3 \=/	500	1:3 Swale	- A
S13.002	49.895	0.668	74.7	0.016	0.00	0.0		0.050	3 \=/	500	1:3 Swale	- The second sec
S13.003	12.604	0.216	58.4	0.006	0.00	0.0		0.050	0	300	Pipe/Conduit	<u>A</u>
S13.004	93.969	0.188	500.0	0.035	0.00	0.0		0.050	3 \=/	600	1:3 Swale	Ť
S13.005	45.731	0.091	500.0	0.017	0.00	0.0		0.050	3 \=/	600	1:3 Swale	- Ē

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow	
	(mm/hr)	(mins)	(m)	(ha)	Flow (l/s)	(l/s)	(1/s)	(m/s)	(l/s)	(l/s)	
07 010	20 01	15 02	11 621	2 607	0.0	0 0	65 1	0 20	401 1	200 0	
57.010	29.91	10.93	44.031	2.00/	0.0	0.0	03.1	0.30	401.1	390.9	
S7.019	29.34	16.46	44.577	2.694	0.0	0.0	65.1	0.74	773.3	390.9	
S7.020	28.10	17.68	44.403	2.708	0.0	0.0	65.1	0.61	609.2	390.9	
S13.000	47.31	6.83	47.884	0.015	0.0	0.0	0.5	0.38	376.4	3.2	
S13.001	44.94	7.56	47.801	0.034	0.0	0.0	1.1	1.23	1231.4	6.6	
S13.002	42.50	8.42	46.642	0.051	0.0	0.0	1.6	0.97	974.0	9.3	
S13.003	41.33	8.87	45.974	0.057	0.0	0.0	1.7	0.47	32.9	10.1	
S13.004	33.69	12.97	45.558	0.091	0.0	0.0	2.2	0.38	401.1	13.3	
S13.005	31.03	14.96	45.370	0.108	0.0	0.0	2.4	0.38	401.1	14.5	
				©1982-2	020 Innov	yze					

COWI UK Limited		Page 11
Kelvin House		
RTC Business Park, London Rd		Constanting of the
Derby DE24 8UP		Mirco
Date 11/04/2023 17:12	Designed by AHSI	Dcainago
File All abilities access trail Rev 2.MDX	Checked by	Diamaye
Innovyze	Network 2020.1.3	

PN	Length	Fall	Slope	I.Area	T.E.	Ba	se	k	n	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(l/s)	(mm)		SECT	(mm)		Design
S13.006	41.815	0.084	500.0	0.015	0.00		0.0		0.050	3 \=/	600	1:3 Swale	æ
s13.007	29.047	0.668	43.5	0.010	0.00		0.0		0.050	3 \=/	600	1:3 Swale	ř
S13.008	23.534	0.558	42.2	0.008	0.00		0.0		0.050	3 \=/	500	1:3 Swale	
S4.025	28.941	1.599	18.1	0.000	0.00		0.0	0.600		0	500	Pipe/Conduit	A
S4.026	50.741	2.611	19.4	0.000	0.00		0.0	0.600		0	500	Pipe/Conduit	
S14 000	25 024	0 050	500 0	0 000	5 00		0 0		0 050	2 = 1	600	1.2 0.0010	•
514.000	25.024	0.050	500.0	0.000	5.00		0.0		0.050	5 \=/	600	I:S SWALE	U
S14.001	64.022	1.211	52.9	0.000	0.00		υ.Ο	0.600		0	300	Pipe/Conduit	8

<u>Network Results Table</u>

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow (l/s)	(l/s)	(1/s)	(m/s)	(1/s)	(l/s)
S13.006	28.99	16.79	45.279	0.123	0.0	0.0	2.6	0.38	401.1	15.4
S13.007	28.61	17.16	45.195	0.132	0.0	0.0	2.7	1.30	1360.0	16.4
S13.008	28.32	17.46	44.727	0.140	0.0	0.0	2.9	1.30	1296.2	17.2
S4.025	21.74	26.74	44.169	4.246	0.0	0.0	66.7	5.12	1006.1	400.0
S4.026	21.65	26.91	42.570	4.246	0.0	0.0	66.7	4.94	970.9	400.0
S14.000	46.27	7.14	41.170	0.000	0.0	0.0	0.0	0.19	30.7	0.0
S14.001	44.73	7.63	41.170	0.000	0.0	0.0	0.0	2.17	153.2	0.0

COWI UK Limited		Page 12
Kelvin House		
RTC Business Park, London Rd		Contraction of the second
Derby DE24 8UP		Mirco
Date 11/04/2023 17:12	Designed by AHSI	Dcainago
File All abilities access trail Rev 2.MDX	Checked by	Diamaye
Innovyze	Network 2020.1.3	

PN	Length	Fall	Slope	I.Area	T.E.	Ba	se	k	n	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(l/s)	(mm)		SECT	(mm)		Design
S4.027	20.882	0.042	500.0	0.000	0.00		0.0	0.600		0	300	Pipe/Conduit	۵
S15.000 S15.001 S15.002 S15.003	41.826 44.245 62.378 6.183	2.570 0.720 1.645 0.021	16.3 61.5 37.9 300.0	0.015 0.017 0.037 0.000	5.00 0.00 0.00 0.00		0.0 0.0 0.0 0.0	0.600	0.050 0.050 0.050	3 \=/ 3 \=/ 3 \=/ 0	500 500 500 300	1:3 Swale 1:3 Swale 1:3 Swale Pipe/Conduit	0 0 0 0 0 0

<u>Network Results Table</u>

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow (l/s)	(1/s)	(1/s)	(m/s)	(1/s)	(l/s)
S4.027	21.41	27.41	39.959	4.246	0.0	0.0	66.7	0.70	49.2«	400.0
S15.000	53.17	5.33	48.570	0.015	0.0	0.0	0.6	2.09	2086.6	3.5
S15.001	50.28	6.02	46.000	0.032	0.0	0.0	1.2	1.07	1073.8	7.0
S15.002	47.48	6.78	45.280	0.069	0.0	0.0	2.4	1.37	1367.0	14.3
S15.003	47.09	6.90	43.635	0.069	0.0	0.0	2.4	0.90	63.8	14.3

COWI UK Limited		Page 13
Kelvin House		
RTC Business Park, London Rd		Concerning of the
Derby DE24 8UP		Mirco
Date 11/04/2023 17:12	Designed by AHSI	Desinado
File All abilities access trail Rev 2.MDX	Checked by	Diamage
Innovyze	Network 2020.1.3	

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
S1	59.510	0.500	Junction		S4.000	59.010	500				
S2	59.550	0.564	Junction		S4.001	58.986	500	S4.000	58.986	500	
S3	59.080	0.500	Junction		S4.002	58.580	500	S4.001	58.580	500	
S4	55.660	0.500	Junction		S4.003	55.160	500	S4.002	55.160	500	
S5	54.300	0.500	Junction		S4.004	53.800	300	S4.003	53.800	500	
S6	54.070	0.500	Junction		S4.005	53.570	500	S4.004	53.570	300	
S7	52.550	0.500	Junction		S4.006	52.050	300	S4.005	52.050	500	
S8	52.120	0.500	Junction		S4.007	51.620	500	S4.006	51.620	300	
S9	51.551	0.500	Junction		S4.008	51.051	500	S4.007	51.051	500	
S10	50.965	0.500	Junction		S4.009	50.465	500	S4.008	50.465	500	
S11	51.225	0.818	Junction		S4.010	50.407	500	S4.009	50.407	500	
S12	51.443	1.109	Junction		S4.011	50.334	500	S4.010	50.334	500	
S13	51.916	1.660	Junction		S4.012	50.256	500	S4.011	50.256	500	
S14	50.744	0.601	Junction		S4.013	50.143	300	S4.012	50.143	500	
S15	50.272	1.229	Junction		S4.014	49.043	300	S4.013	49.043	300	
S16	49.729	1.500	Junction		S4.015	48.229	300	S4.014	48.229	300	
S17	49.350	0.500	Junction		S5.000	48.850	500				
S18	49.096	0.914	Junction		S4.016	48.182	500	S4.015	48.182	300	
								S5.000	48.182	500	

COWI UK Limited		Page 14
Kelvin House		
RTC Business Park, London Rd		Concernance of the second
Derby DE24 8UP		Mirco
Date 11/04/2023 17:12	Designed by AHSI	Dcainago
File All abilities access trail Rev 2.MDX	Checked by	Diamaye
Innovyze	Network 2020.1.3	

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
S19	48.818	0.678	Junction		S4.017	48.140	500	S4.016	48.140	500	
S20	47.464	0.500	Junction		S4.018	46.964	500	S4.017	46.964	500	
S21	46.414	0.500	Junction		S4.019	45.914	500	S4.018	45.914	500	
S22	48.116	2.342	Junction		S4.020	45.774	500	S4.019	45.774	500	
S23	48.184	2.511	Junction		S4.021	45.673	500	S4.020	45.673	500	
S24	46.737	1.137	Junction		S4.022	45.600	500	S4.021	45.600	500	
S25	45.634	0.500	Junction		S4.023	45.134	500	S4.022	45.134	500	
S26	48.203	0.500	Junction		S6.000	47.703	500				
S27	46.584	0.500	Junction		S6.001	46.084	500	S6.000	46.084	500	
S28	45.294	0.500	Junction		S6.002	44.794	500	S6.001	44.794	500	
S29	46.056	1.338	Junction		S6.003	44.718	500	S6.002	44.718	500	
S30	45.328	0.707	Junction		S6.004	44.621	500	S6.003	44.621	500	
S31	45.283	0.740	Junction		S4.024	44.543	500	S4.023	44.543	500	
								S6.004	44.543	500	
S32	55.190	0.500	Junction		S7.000	54.690	500				
S33	54.810	0.500	Junction		S7.001	54.310	500	S7.000	54.310	500	
S34	54.200	0.500	Junction		S7.002	53.700	500	S7.001	53.700	500	
S35	54.035	0.505	Junction		S7.003	53.530	300	S7.002	53.530	500	
S36	54.150	1.575	Junction		S7.004	52.575	375	S7.003	52.650	300	

COWI UK Limited		Page 15
Kelvin House		
RTC Business Park, London Rd		Concernance of the second
Derby DE24 8UP		Mirco
Date 11/04/2023 17:12	Designed by AHSI	Dcainago
File All abilities access trail Rev 2.MDX	Checked by	Diamaye
Innovyze	Network 2020.1.3	

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
S37	53.710	1.589	Junction		S7.005	52.121	375	S7.004	52.121	375	
S38	53.110	1.575	Junction		s7.006	51.535	500	s7.005	51.535	375	
S39	52.440	1.782	Junction		s7.007	50.658	375	s7.006	50.658	500	
S40	52.260	1.642	Junction		s7.008	50.618	500	s7.007	50.618	375	
S41	53.000	0.890	Junction		S8.000	52.110	500				
S42	51.450	0.700	Junction		S8.001	50.750	500	S8.000	50.750	500	
S43	53.580	0.500	Junction		S9.000	53.080	500				
S44	52.740	0.638	Junction		S9.001	52.102	500	S9.000	52.102	500	
S45	52.170	1.039	Junction		S9.002	51.131	500	S9.001	51.131	500	
S46	52.330	1.000	Junction		S10.000	51.330	500				
S47	52.000	1.252	Junction		S9.003	50.748	300	S9.002	50.748	500	
								S10.000	50.748	500	
S48	51.510	0.820	Junction		S8.002	50.690	600	S8.001	50.690	500	
								S9.003	50.700	300	160
S49	51.050	0.860	Junction		S8.003	50.190	600	S8.002	50.190	600	
S50	50.221	0.741	Junction		S7.009	49.480	500	S7.008	49.480	500	
								S8.003	49.480	600	
S51	49.391	0.714	Junction		s7.010	48.677	500	s7.009	48.677	500	
S52	49.964	1.814	Junction		s7.011	48.150	500	s7.010	48.150	500	

COWI UK Limited		Page 16
Kelvin House		
RTC Business Park, London Rd		the second second
Derby DE24 8UP		Mirco
Date 11/04/2023 17:12	Designed by AHSI	Dcainago
File All abilities access trail Rev 2.MDX	Checked by	Diamaye
Innovyze	Network 2020.1.3	

MH Name	MH CL (m)	MH Depth	MH Connection	MH Diam.,L*W	PN	Pipe Out Invert	Diameter	PN	Pipes In Invert	Diameter	Backdrop
		(m)		(mm)		Level (m)	(mm)		Level (m)	(mm)	(mm)
S53	52.150	0.500	Junction		s11.000	51.650	500				
S54	50.140	0.500	Junction		S11.001	49.640	500	S11.000	49.640	500	
S55	49.158	0.500	Junction		S11.002	48.658	500	S11.001	48.658	500	
S56	49.505	1.367	Junction		S11.003	48.138	500	S11.002	48.138	500	
S57	49.159	1.214	Junction		S11.004	47.945	500	S11.003	47.945	500	
S58	48.520	0.655	Junction		S11.005	47.865	500	S11.004	47.865	500	
S59	48.755	0.971	Junction		s7.012	47.784	500	S7.011	47.784	500	
								S11.005	47.784	500	
S60	49.238	1.740	Junction		s7.013	47.498	500	s7.012	47.498	500	
S61	49.160	1.994	Junction		S7.014	47.166	500	s7.013	47.166	500	
S62	48.333	1.501	Junction		s7.015	46.833	500	S7.014	46.832	500	
S63	48.604	0.500	Junction		S12.000	48.104	500				
S64	47.491	0.683	Junction		S7.016	46.808	500	S7.015	46.808	500	
								S12.000	46.808	500	
S65	45.219	0.500	Junction		S7.017	44.719	600	S7.016	44.719	500	
S66	45.680	1.049	Junction		S7.018	44.631	600	S7.017	44.631	600	
S67	45.311	0.734	Junction		s7.019	44.577	600	S7.018	44.577	600	
S68	44.903	0.500	Junction		s7.020	44.403	500	s7.019	44.403	600	
S69	48.384	0.500	Junction		S13.000	47.884	500				

COWI UK Limited		Page 17
Kelvin House		
RTC Business Park, London Rd		No. of the local sectors of th
Derby DE24 8UP		Mirco
Date 11/04/2023 17:12	Designed by AHSI	Desinado
File All abilities access trail Rev 2.MDX	Checked by	Diamaye
Innovyze	Network 2020.1.3	

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
s70	48.578	0.777	Junction		S13.001	47.801	500	S13.000	47.801	500	
S71	47.142	0.500	Junction		S13.002	46.642	500	S13.001	46.642	500	
S72	46.474	0.500	Junction		S13.003	45.974	300	S13.002	45.974	500	
S73	46.258	0.700	Junction		S13.004	45.558	600	S13.003	45.758	300	
S74	47.655	2.285	Junction		S13.005	45.370	600	S13.004	45.370	600	
S75	47.730	2.451	Junction		S13.006	45.279	600	S13.005	45.279	600	
S76	46.145	0.950	Junction		S13.007	45.195	600	S13.006	45.195	600	
S77	45.227	0.700	Junction		S13.008	44.727	500	S13.007	44.527	600	
S78	44.819	0.650	Junction		S4.025	44.169	500	S4.024	44.169	500	
								S7.020	44.169	500	
								S13.008	44.169	500	
S79	43.220	0.650	Junction		S4.026	42.570	500	S4.025	42.570	500	
S80	41.670	0.500	Junction		S14.000	41.170	600				
S81	42.410	1.290	Junction		S14.001	41.170	300	S14.000	41.120	600	
S82	41.459	1.500	Junction		S4.027	39.959	300	S4.026	39.959	500	
								S14.001	39.959	300	
S78	40.271	0.354	Open Manhole	0		OUTFALL		S4.027	39.917	300	
S83	49.070	0.500	Junction		S15.000	48.570	500				

COWI UK Limited		Page 18
Kelvin House		
RTC Business Park, London Rd		Constanting of the
Derby DE24 8UP		Mirco
Date 11/04/2023 17:12	Designed by AHSI	Desinado
File All abilities access trail Rev 2.MDX	Checked by	Diamaye
Innovyze	Network 2020.1.3	

MH Name	MH CL (m)	MH Depth (m)	MH Connection	<u>Mann</u> MH Diam.,L*W (mm)	ole Sch PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
S84	47.000	1.000	Junction		s15.001	46.000	500	s15.000	46.000	500	
S85	46.280	1.000	Junction		s15.002	45.280	500	S15.001	45.280	500	
S86	44.760	1.125	Junction		s15.003	43.635	300	S15.002	43.635	500	
S73	44.450	0.836	Open Manhole	1500		OUTFALL		S15.003	43.614	300	

MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)
S1	558920.623	189895.850			No Entry	\mathcal{P}
S2	558912.670	189886.739			No Entry	Q.
\$3	558913.871	189876.076			No Entry	
S4	558960.878	189834.875			No Entry	·•• 0
		©19	82-2020 Inr	novvze		

COWI UK Limited		Page 19
Kelvin House		
RTC Business Park, London Rd		Concernance of the second
Derby DE24 8UP		Mirco
Date 11/04/2023 17:12	Designed by AHSI	Dcainago
File All abilities access trail Rev 2.MDX	Checked by	Diamaye
Innovyze	Network 2020.1.3	

MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)
S5	558980.866	189815.778			No Entry	
S6	558973.745	189806.834			No Entry	d'
S7	558969.116	189768.293			No Entry	
S8	558971.531	189757.330			No Entry	
59	558948.739	189736.917			No Entry	
S10	558903.135	189700.693			No Entry	
S11	558875.602	189692.390			No Entry	
S12	558840.177	189682.741			No Entry	·
		©19	82-2020 Inn	lovyze		

COWI UK Limited		Page 20
Kelvin House		
RTC Business Park, London Rd		
Derby DE24 8UP		Micco
Date 11/04/2023 17:12	Designed by AHSI	Desinado
File All abilities access trail Rev 2.MDX	Checked by	Diamaye
Innovyze	Network 2020.1.3	

MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)
\$13	558801.304	189681.580			No Entry	
S14	558745.796	189690.359			No Entry	
\$15	558738.842	189689.749			No Entry	
S16	558718.073	189683.851			No Entry	<i>></i>
S17	558714.202	189699.995			No Entry	
S18	558707.124	189675.163			No Entry	
S19	558703.654	189654.268			No Entry	
S20	558690.287	189610.015			No Entry	
		<u></u>	00.0000 To			`
		019	02-2020 Inn	lovyze		

COWI UK Limited							Page 21
Kelvin House							
RTC Business Park, London Rd							
Derby DE24 8UP							Mirro
Date 11/04/2023 17:12		De	esigned by A	AHSI			Drainago
File All abilities access trail Re	ev 2.MDX	Cl	hecked by				Diamage
Innovyze		Ne	etwork 2020	.1.3			
		<u>Manhol</u> e	e Schedules	for Storm			
МН	Manhole	Manhole	Intersection	Intersection	Manhole	Layout	
Name	Easting (m)	Northing (m)	Easting (m)	Northing (m)	Access	(North)	
			. ,				
S21	558720.158	189543.733			No Entry		
s22	558784.251	189516.687			No Entry		
s23	558824.696	189486.070			No Entry	14 C	
						` Q	
\$24	558842.848	189454.712			No Entry	. N	
						le la	
S25	558863.242	189428.505			No Entry		

©1982-2020 Innovyze

No Entry

No Entry

No Entry

S26 559005.554 189547.473

s27 559002.383 189501.776

S28 558985.553 189461.852

COWI UK Limited							Page 22
Kelvin House							
RTC Business Park, London Rd							The second second
Derby DE24 8UP							Mirro
Date 11/04/2023 17:12		De	esigned by A	HSI			Dcainago
File All abilities access trail Re	ev 2.MDX	Cl	hecked by				Diamage
Innovyze		Ne	etwork 2020	1.3			
MH Name	Manhole Easting (m)	Manhole Manhole Northing (m)	e Schedules Intersection Easting (m)	for Storm Intersection Northing (m)	Manhole Access	Layout (North)	
S29	558950.307	189447.505			No Entry	10-	
S30	558919.673	189410.075			No Entry		
S31	558881.690	189416.746			No Entry		

No Entry

No Entry

No Entry

No Entry

No Entry

s32 559047.676 189871.432

s33 559034.957 189857.333

S34 559021.992 189837.445

s35 559011.797 189827.479

s36 559005.786 189827.479

COWI UK Limited		Page 23
Kelvin House		
RTC Business Park, London Rd		Constanting of the second
Derby DE24 8UP		Mirco
Date 11/04/2023 17:12	Designed by AHSI	Dcainago
File All abilities access trail Rev 2.MDX	Checked by	Diamaye
Innovyze	Network 2020.1.3	

COWI UK Limited		Page 24
Kelvin House		
RTC Business Park, London Rd		
Derby DE24 8UP		Micco
Date 11/04/2023 17:12	Designed by AHSI	Desinado
File All abilities access trail Rev 2.MDX	Checked by	Diamaye
Innovyze	Network 2020.1.3	
	Manhole Schedules for Storm	

MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)
S45	559066.603	189787.539			No Entry	J
S46	559014.181	189777.303			No Entry	
S47	559057.612	189779.894			No Entry	
S48	559063.449	189766.136			No Entry	
S49	559040.721	189745.065			No Entry	Prov
S50	559006.723	189711.430			No Entry	Free
S51	559025.321	189654.634			No Entry	
\$52	559029.592	189585.828			No Entry	\mathcal{P}
		@1.0	00 0000 Ter			/

COWI UK Limited		Page 25
Kelvin House		
RTC Business Park, London Rd		Constanting of the
Derby DE24 8UP		Mirco
Date 11/04/2023 17:12	Designed by AHSI	Dcainago
File All abilities access trail Rev 2.MDX	Checked by	Diamaye
Innovyze	Network 2020.1.3	T

COWI UK Limited		Page 26
Kelvin House		
RTC Business Park, London Rd		
Derby DE24 8UP		Mirco
Date 11/04/2023 17:12	Designed by AHSI	Desinado
File All abilities access trail Rev 2.MDX	Checked by	Diamaye
Innovyze	Network 2020.1.3	
	Manhole Schedules for Storm	

COWI UK Limited		Page 27
Kelvin House		
RTC Business Park, London Rd		Constant of the second
Derby DE24 8UP		Micco
Date 11/04/2023 17:12	Designed by AHSI	Dcainago
File All abilities access trail Rev 2.MDX	Checked by	Diamaye
Innovyze	Network 2020.1.3	

COWI UK Limited		Page 28
Kelvin House		
RTC Business Park, London Rd		The second second
Derby DE24 8UP		Mirco
Date 11/04/2023 17:12	Designed by AHSI	Dcainago
File All abilities access trail Rev 2.MDX	Checked by	Diamaye
Innovyze	Network 2020.1.3	
Manho MH Manhole Manhol	ole Schedules for Storm e Intersection Intersection Manhole Layout	

COWI UK Limited							Page 29				
Kelvin House											
RTC Business Park, London Rd							Contraction of the second				
Derby DE24 8UP							Mirco				
Date 11/04/2023 17:12			Designed by A	AHSI			Dcainago				
File All abilities access trail Re	ev 2.MDX		Checked by				Diginarie				
Innovyze			Network 2020.	.1.3							
Manhole Schedules for Storm											
мн	Manhole	Manhole	Intersection	Intersection	Manhole	Lavout					
Name	Easting	Northing	g Easting	Northing	Access	(North)					
	(m)	(m)	(m)	(m)							
S84	558674.375	189732.29	99		No Entry						
C 9 5	550622 004	100712 10	11		No Entru						
565	JJ0032.094	109/43.40			NO EILLY						
S86	558575.725	189720.78	30		No Entry						
						9					
\$73	558575.610	189714.59	98		No Entry						
						٢					
			1982-2020 Trr	0111170							
		0	IJUZ-ZUZU III.	IONÀTE							

COWI UK Limited		Page 30
Kelvin House		
RTC Business Park, London Rd		Contraction of the second
Derby DE24 8UP		Micco
Date 11/04/2023 17:12	Designed by AHSI	Dcainago
File All abilities access trail Rev 2.MDX	Checked by	Diamaye
Innovyze	Network 2020.1.3	

Area Summary for Storm

Pipe	PIMP	PIMP	PIMP	Gross	Imp.	Pipe Total
Number	Туре	Name	(%)	Area (ha)	Area (ha)	(ha)
4.000	Classification	Unpaved	20	0.012	0.002	0.002
4.001	Classification	Unpaved	20	0.013	0.003	0.003
4.002	Classification	Paved	100	0.153	0.153	0.153
4.003	Classification	Paved	100	0.085	0.085	0.085
4.004	-	-	100	0.000	0.000	0.000
4.005	Classification	Paved	100	0.020	0.020	0.020
4.006	-	-	100	0.000	0.000	0.000
4.007	Classification	Paved	100	0.013	0.013	0.013
	Classification	Unpaved	20	0.014	0.003	0.016
4.008	Classification	Paved	100	0.016	0.016	0.016
	Classification	Unpaved	20	0.023	0.005	0.021
4.009	Classification	Paved	100	0.010	0.010	0.010
	Classification	Unpaved	20	0.012	0.002	0.012
4.010	Classification	Paved	100	0.013	0.013	0.013
	Classification	Unpaved	20	0.015	0.003	0.016
4.011	Classification	Paved	100	0.012	0.012	0.012
	Classification	Unpaved	20	0.015	0.003	0.015
4.012	Classification	Paved	100	0.019	0.019	0.019
	Classification	Unpaved	20	0.023	0.005	0.024
4.013	-	-	100	0.000	0.000	0.000
4.014	Classification	Unpaved	20	0.057	0.011	0.011
4.015	-	-	100	0.000	0.000	0.000
5.000	-	-	100	0.000	0.000	0.000
4.016	Classification	Unpaved	20	0.198	0.040	0.040
4.017	Classification	Unpaved	20	0.549	0.110	0.110
4.018	Classification	Unpaved	20	0.639	0.128	0.128
4.019	Classification	Unpaved	20	0.472	0.094	0.094
		©1982-2	020	Innovyze		

COWI UK Limited		Page 31
Kelvin House		
RTC Business Park, London Rd		Contraction of the second
Derby DE24 8UP		Mirco
Date 11/04/2023 17:12	Designed by AHSI	Dcainago
File All abilities access trail Rev 2.MDX	Checked by	Diamage
Innovyze	Network 2020.1.3	

Area Summary for Storm

Pipe	PIMP	PIMP	PIMP	Gross	Imp.	Pipe Total
Number	Туре	Name	(%)	Area (ha)	Area (ha)	(ha)
4.020	Classification	Unpaved	20	0.335	0.067	0.067
4.021	Classification	Unpaved	20	0.231	0.046	0.046
4.022	Classification	Unpaved	20	0.211	0.042	0.042
4.023	Classification	Unpaved	20	0.065	0.013	0.013
6.000	Classification	Unpaved	20	0.475	0.095	0.095
6.001	Classification	Unpaved	20	0.551	0.110	0.110
6.002	Classification	Unpaved	20	0.519	0.104	0.104
6.003	Classification	Unpaved	20	0.053	0.011	0.011
	Classification	Unpaved	20	0.691	0.138	0.149
6.004	Classification	Unpaved	20	0.109	0.022	0.022
4.024	-	-	100	0.000	0.000	0.000
7.000	Classification	Paved	100	0.234	0.234	0.234
	Classification	Unpaved	20	0.021	0.004	0.238
7.001	Classification	Paved	100	0.239	0.239	0.239
	Classification	Unpaved	20	0.014	0.003	0.242
7.002	Classification	Paved	100	0.198	0.198	0.198
	Classification	Unpaved	20	0.015	0.003	0.201
7.003	-	-	100	0.000	0.000	0.000
7.004	Classification	Paved	100	0.033	0.033	0.033
7.005	-	-	100	0.000	0.000	0.000
7.006	Classification	Unpaved	20	0.163	0.033	0.033
	Classification	Paved	100	0.025	0.025	0.057
7.007	-	-	100	0.000	0.000	0.000
7.008	-	-	100	0.000	0.000	0.000
8.000	Classification	Unpaved	20	0.079	0.016	0.016
8.001	-	-	100	0.000	0.000	0.000
9.000	Classification	Unpaved	20	0.344	0.069	0.069
		 ©1982-2	020	Innovyze		

COWI UK Limited		Page 32
Kelvin House		
RTC Business Park, London Rd		Contraction of the second
Derby DE24 8UP		Micco
Date 11/04/2023 17:12	Designed by AHSI	Dcainago
File All abilities access trail Rev 2.MDX	Checked by	Diamaye
Innovyze	Network 2020.1.3	

<u>Area Summary for Storm</u>

Number	_					
	Туре	Name	(%)	Area (ha)	Area (ha)	(ha)
	Classification	Paved	100	0.017	0.017	0.086
9.001	Classification	Paved	100	0.010	0.010	0.010
	Classification	Unpaved	20	0.193	0.039	0.049
9.002	Classification	Unpaved	20	0.077	0.015	0.015
	Classification	Paved	100	0.004	0.004	0.020
	Classification	Paved	100	0.009	0.009	0.029
10.000	Classification	Paved	100	0.013	0.013	0.013
	Classification	Unpaved	20	0.105	0.021	0.034
	Classification	Paved	100	0.038	0.038	0.072
9.003	-	-	100	0.000	0.000	0.000
8.002	Classification	Unpaved	20	0.086	0.017	0.017
8.003	Classification	Unpaved	20	0.103	0.021	0.021
7.009	Classification	Unpaved	20	1.329	0.266	0.266
	Classification	Paved	100	0.020	0.020	0.286
7.010	Classification	Unpaved	20	1.422	0.284	0.284
	Classification	Paved	100	0.024	0.024	0.308
7.011	Classification	Unpaved	20	0.778	0.156	0.156
	Classification	Paved	100	0.014	0.014	0.169
11.000	Classification	Unpaved	20	0.314	0.063	0.063
11.001	Classification	Unpaved	20	0.550	0.110	0.110
11.002	Classification	Unpaved	20	0.678	0.136	0.136
11.003	Classification	Unpaved	20	0.185	0.037	0.037
11.004	Classification	Unpaved	20	0.322	0.064	0.064
11.005	-	-	100	0.000	0.000	0.000
7.012	-	-	100	0.000	0.000	0.000
7.013	Classification	Unpaved	20	0.762	0.152	0.152
7.014	-	-	100	0.000	0.000	0.000

COWI UK Limited		Page 33
Kelvin House		
RTC Business Park, London Rd		Contraction of the second
Derby DE24 8UP		Mirco
Date 11/04/2023 17:12	Designed by AHSI	Dcainago
File All abilities access trail Rev 2.MDX	Checked by	Dialinage
Innovyze	Network 2020.1.3	

Area Summary for Storm

Pipe	PIMP	PIMP	PIMP	Gross	Imp.	Pipe Total	
Number	Туре	Name	(%)	Area (ha)	Area (ha)	(ha)	
7.015	-	-	100	0.000	0.000	0.000	
12.000	Classification	Paved	100	0.013	0.013	0.013	
7.016	Classification	Unpaved	20	1.214	0.243	0.243	
	Classification	Paved	100	0.020	0.020	0.263	
7.017	Classification	Paved	100	0.016	0.016	0.016	
7.018	Classification	Paved	100	0.010	0.010	0.010	
7.019	Classification	Paved	100	0.007	0.007	0.007	
7.020	Classification	Paved	100	0.015	0.015	0.015	
13.000	Classification	Paved	100	0.015	0.015	0.015	
13.001	Classification	Paved	100	0.019	0.019	0.019	
13.002	Classification	Paved	100	0.016	0.016	0.016	
13.003	Classification	Paved	100	0.006	0.006	0.006	
13.004	Classification	Paved	100	0.035	0.035	0.035	
13.005	Classification	Paved	100	0.017	0.017	0.017	
13.006	Classification	Paved	100	0.015	0.015	0.015	
13.007	Classification	Paved	100	0.010	0.010	0.010	
13.008	Classification	Paved	100	0.008	0.008	0.008	
4.025	-	-	100	0.000	0.000	0.000	
4.026	-	-	100	0.000	0.000	0.000	
14.000	-	-	100	0.000	0.000	0.000	
14.001	-	-	100	0.000	0.000	0.000	
4.027	-	-	100	0.000	0.000	0.000	
15.000	Classification	Paved	100	0.015	0.015	0.015	
	Classification	Unpaved	20	0.002	0.000	0.015	
15.001	Classification	Unpaved	20	0.002	0.000	0.000	
	Classification	Paved	100	0.016	0.016	0.017	
15.002	Classification	Paved	100	0.036	0.036	0.036	
	(©1982-2	020	Innovyze			

COWI UK Limited		Page 34
Kelvin House		
RTC Business Park, London Rd		Constanting of the
Derby DE24 8UP		Mirco
Date 11/04/2023 17:12	Designed by AHSI	Dcainago
File All abilities access trail Rev 2.MDX	Checked by	Diamaye
Innovyze	Network 2020.1.3	

Area Summary for Storm

Pipe	PIMP	PIMP	PIMP	Gross	Imp.	Pipe Total
Number	Туре	Name	(%)	Area (ha)	Area (ha)	(ha)
	Classification	Unpaved	20	0.004	0.001	0.037
15.003	-	-	100	0.000	0.000	0.000
				Total	Total	Total
				15.550	4.315	4.315
	Free Flowi	ing Out:	fall	Details	for Storm	ı

Out	tfall	Outfall	c.	Level	I.	Level		Min	D,L	W
Pipe	Number	Name		(m)		(m)	I.	Level	(mm)	(mm)
								(m)		

S4.027 S78 40.271 39.917 0.000 0 0

Free Flowing Outfall Details for Storm

Outfall Outfall C. Level I. Level Min D,L W Pipe Number Name (m) (m) I. Level (mm) (mm) (m)

S15.003 S73 44.450 43.614 0.000 1500 0

Kelvin House RTC Business Park, London Rd Derby D224 8UP Date 11/04/2023 17:12 File All abilities access trail Rev 2.MDX Innovyze Network 2020.1.3 Network 2020.1.3 Noter file Reveal Reduction Pactor 1.000 Not Start (ains) 0 Additional File + 60 for 61 Flow 0.000 Not Start (ains) 0 Additional File + 60 for 61 Flow 0.000 Not Start (ains) 0 Additional File + 60 for 61 Flow 0.000 Not Start (ains) 0 Additional File + 60 for 61 Flow 0.000 Number of Input Hydrographs 0 Number of Storage 0.000 Number of Input Hydrographs 0 Number of Storage Structures 3 Number of Real Time Controls 0 Synthetic Rainfall Details Rainfall Model FSR M5-60 (mm) 20.000 Return Period (years) 1 Ratio R 0.400 Return Period (ye	COWI UK Limited		Page 35		
RTC Business Park, London Rd Designed by AMSI Designed by AMSI Date 11/04/2023 17:12 Designed by AMSI Checked by Tinnovyze Network 2020.1.3 Detemption of the second by AMSI Checked by Innovyze Network 2020.1.3 Dimulation Criteria for Storm Volumetric Runoff Coeff 1.000 Manhole Meadloss Coeff (Global) 0.500 Inlet Coefficient 0.800 Areal Reduction Factor 1.000 Food Per bectare (1/4) 0.000 Elow per Person per Day (1/periday) 0.000 Hot Start (mins) 0 Additional Flow - s of fortal rlow 0.000 Fun Thrie (mins) 60 Momber of Input Hydrographe 0 Munber of Offline Controls 0 Number of Real Time Controls 0 Number of Online Controls 7 Number of Storage Structures 3 Number of Real Time Controls 0 Synthetic Rainfall Details Rainfall Model FSR M5-60 (mm) 20.000 Cv (Summer) 1.000 Return Period (years) 1 Ratio B 0.400 Cv (Winter) 0.840 Region England and Wales Profile Type Summer Storm Duration (mins) 30	Kelvin House				
Darby D224 80P Designed by AHSI Designed by AHSI Official State File All abilities access trail Rev 2.MDX Checked by Innovyze Network 2020.1.3 Simulation Criteria for Store Volumetric Runoff Coeff 1.000 Manhole Headloss Coeff (Global) 0.500 Inlet Coefficcient 0.800 Areal Reduction Pactor 1.000 Foul Sewage per hetcar (1/9 0.000 Fou per Person per by (1/per/day) 0.000 Ren finites for Start (nins) 0 Additional Pior + 5 of Yotal Flow 0.000 Output Interval (mins) 1 Number of Toput Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Storage Structures 3 Number of Real Time Controls 0 Sunthation Rainfall Details Rainfall Model FSR M5-60 (mm 20.000 CV (Summer) 1.000 Return Period (years) 1 Ratio R 0.400 CV (Winter) 0.840 Return Period (years) 1 Ratio R 0.400 CV (Winter) 0.840 Region England and Wales Profile Type Summer Storm Duration (mins) 30	RTC Business Park, London Rd		Concerned and		
Date 11/04/2023 17:12 Designed by AHSI File All abilities access trail Rev 2.MDX Checked by Innovyze Network 2020.1.3 Distance of the second of the	Derby DE24 8UP		Mirco		
File All abilities access trail Rev 2.MDX Checked by Innovyze Network 2020.1.3 Simulation Criteria for Storm Metwork 2020.1.3 Simulation Criteria for Storm Volumetric Runoff Coeff 1.000 Manhole Headloss Coeff (Global) 0.500 Inlet Coefficient 0.800 Areal Reduction Factor 1.000 Four Sewage per hectare (1/s) 0.000 Flow per Person per Bay (1/per/day) 0.000 Host Start Level (mm) 0 Additional Flow - s of Total Flow 0.000 Cutput Interval (mins) 1 Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 7 Number of Storage Structures 3 Number of Real Time Controls 0 Sunthetic Rainfall Details Rainfall Model FSR M5-60 (mm) Cov (Summer) 1.000 Return Period (years) 1 Ratio R 0.4000 Cv (Winter) 0.840 Region England and Wales Profile Type Summer Storm Duration (mina) 30 BU82-2020 Innovvze	Date 11/04/2023 17:12	Designed by AHSI	Desinado		
Innovyze Network 2020.1.3 Simulation Criteria for Storm Volumetric Runoff Coeff 1.000 Manhole Headloss Coeff (Global) 0.500 Inlet Coefficient 0.800 Areal Reduction Factor 1.000 Foul Sewage per bectare (1/a) 0.000 Flow per Person per Day (1/per/day) 0.000 Not Start (mins) 0 Additional Flow - 5 of forlar Flow 0.000 Run Time (mins) 60 Hot Start Level (mm) 0 MADD Factor * 10m'/ha Storage 0.000 Output Interval (mins) 1 Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Conline Controls 7 Number of Storage Structures 3 Number of Real Time Controls 0 Synthetic Rainfall Details Rainfall Model FSR M5-60 (mm) 20.000 Cv (Summer) 1.000 Return Period (years) 1 Ratio R 0.400 Cv (Winter) 0.840 Region England and Wales Profile Type Summer Storm Duration (mins) 30 EU982-2020 Innovvze	File All abilities access trail Rev 2.MDX	Checked by	Diamaye		
Simulation Criteria for Storm Volumetric Runoff Coeff 1.000 Manhole Headloss Coeff (Global) 0.500 Inlet Coefficient 0.800 Areal Reduction Factor 1.000 Foul Sewage per hectare (1/a) 0.000 Flow per Person per Day (1/per/day) 0.000 Hot Start (mins) 0 Additional Flow - % of Total Flow 0.000 Run Time (mins) 60 Hot Start Level (mm) 0 MADD Factor * 10m*/ha Storage 0.000 Output Interval (mins) 1 Number of Input Hydrographs 0 Number of Storage Structures 3 Number of Time/Area Diagrams 0 Number of Colline Controls 7 Number of Storage Structures 3 Number of Real Time Controls 0 Expithetic Rainfall Details Rainfall Model FSR M5-50 (mm) 20.000 Cv (Summer) 1.000 Return Period (years) 1 Ratio R 0.400 Cv (Winter) 0.840 Region England and Wales Profile Type Summer Storm Duration (mins) 30	Innovyze	Network 2020.1.3			
<pre>Volumetric Runoff Coeff 1.000 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Areal Reduction Factor 1.000 Foul Sewage per hectare (1/s) 0.000 Flow per Person per Day (1/per/day) 0.000 Hot Start (mins) 0 Additional Elow - % of Total Flow 0.000 Output Interval (mins) 1 Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 7 Number of Storage Structures 3 Number of Real Time Controls 0 Synthetic Rainfall Details Rainfall Model FSR M5-60 (mm) 20.000 Cv (Summer) 1.000 Return Period (years) 1 Ratio R 0.400 Cv (Winter) 0.840 Region England and Wales Profile Type Summer Storm Duration (mins) 30</pre>	Simulation Criteria for Storm				
Synthetic Rainfall Details Rainfall Model FSR M5-60 (mm) 20.000 Cv (Summer) 1.000 Return Period (years) 1 Ratio R 0.400 Cv (Winter) 0.840 Region England and Wales Profile Type Summer Storm Duration (mins) 30 Super-Store Store Stor	Volumetric Runoff Coeff 1.000 Manhole Headloss Coeff (Global) 0.500 Inlet Coefficient 0.800 Areal Reduction Factor 1.000 Foul Sewage per hectare (1/s) 0.000 Flow per Person per Day (1/per/day) 0.000 Hot Start (mins) 0 Additional Flow - % of Total Flow 0.000 Run Time (mins) 60 Hot Start Level (mm) 0 MADD Factor * 10m ³ /ha Storage 0.000 Output Interval (mins) 1 Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Opline Controls 7 Number of Storage 3 Number of Facel Time Controls 0				
Synthetic Rainfall Details Rainfall Model FSR M5-60 (mm) 20.000 Cv (Summer) 1.000 Return Period (years) 1 Ratio R 0.400 Cv (Winter) 0.840 Region England and Wales Profile Type Summer Storm Duration (mins) 30 01982-2020 Innovvze	Mander of entitle concrete , Mander of beerage beraceares of Mander of Real find concrete of				
Rainfall Model FSR M5-60 (mm) 20.000 Cv (Summer) 1.000 Return Period (years) 1 Ratic R 0.400 Cv (Winter) 0.840 Region England and Wales Profile Type Summer Storm Duration (mins) 30	Synthetic Rainfall Details				
Return Period (years) 1 Ratio R 0.400 Cv (Winter) 0.840 Region England and Wales Profile Type Summer Storm Duration (mins) 30	Rainfall Model	FSR M5-60 (mm) 20.000 Cv (Summer) 1.000			
Region England and Wales Profile Type Summer Storm Duration (mins) 30	Return Period (years)	1 Ratio R 0.400 Cv (Winter) 0.840			
©1982-2020 Innovvze	Region England and Wales Profile Type Summer Storm Duration (mins) 30				
©1982-2020 Innovvze					
©1982-2020 Innovvze					
©1982-2020 Innovvze					
©1982-2020 Innovvze					
©1982-2020 Innovvze					
©1982-2020 Innovvze					
©1982-2020 Innovvze					
©1982-2020 Innovvze					
©1982-2020 Innovvze					
©1982-2020 Innovvze					
©1982-2020 Innovvze					
©1982-2020 Innovvze					
		©1982-2020 Innovyze			

COWI UK Limited		Page 36		
Kelvin House				
RTC Business Park, London Rd		Section and		
Derby DE24 8UP		Mirco		
Date 11/04/2023 17:12	Designed by AHSI	Dcainago		
File All abilities access trail Rev 2.MDX	Checked by	Diamaye		
Innovyze	Network 2020.1.3			
Online Controls for Storm				
Orifice Manhole: S16, DS/PN: S4.015, Volume (m ³): 1.5				
Diameter (m) 0.250 Discharge Coefficient 0.600 Invert Level (m) 48.229				
<u>Orifice Manhole: S47, DS/PN: S9.003, Volume (m³): 198.7</u>				
Diameter (m) 0.075 Discharge Coefficient 0.600 Invert Level (m) 50.748				
Orifice Manhole: S62, DS/PN: S7.015, Volume (m ³): 2.8				
Diameter (m) 0.410 Discharge Coefficient 0.600 Invert Level (m) 46.833				
Orifice Manhole: S82, DS/PN: S4.027, Volume (m ³): 14.5				
Diameter (m) 0.160 Discharge Coefficient 0.600 Invert Level (m) 39.959				
Orifice Manhole: S8	84, DS/PN: S15.001, Volume (m³): 41.8			
Diameter (m) 0.050 Disch	arge Coefficient 0.600 Invert Level (m) 46.000			
Orifice Manhole: S85, DS/PN: S15.002, Volume (m ³): 154.9				
Diameter (m) 0.050 Disch	arge Coefficient 0.600 Invert Level (m) 45.280			
	01982-2020 Innovyze			

COWI UK Limited		Page 37
Kelvin House		
RTC Business Park, London Rd		the second
Derby DE24 8UP		Mirco
Date 11/04/2023 17:12	Designed by AHSI	Desinado
File All abilities access trail Rev 2.MDX	Checked by	Diginada
Innovyze	Network 2020.1.3	
<u>Hydro-Brake® Optimum Manhc</u>	ole: S86, DS/PN: S15.003, Volume (m³): 218.3	
Unit Reference MD-SHE-0047-10	00-1000-1000 Sump Available Yes	
Design Head (m)	1.000 Diameter (mm) 47	
Design Flow (1/s)	I.U Invert Level (m) 43.635	
Objective Minimise upst	ream storage Suggested Manhole Diameter (mm) 1200	
Application	Surface	
Control Points Head (m)	Flow (1/s) Control Points Head (m) Flow (1/s)	
Design Point (Calculated) 1.000	1.0 Kick-Flo® 0.415 0.7	
Flush-Flo™ 0.205	0.8 Mean Flow over Head Range - 0.8	
The hydrological calculations have been based on the Head/ another type of control device other than a Hydro-Brake Op	/Discharge relationship for the Hydro-Brake® Optimum as speci ptimum® be utilised then these storage routing calculations w	fied. Should ill be invalidated
Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m)	Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth ((m) Flow (l/s)
0.100 0.8 0.600 0.8 1.600	1.2 2.600 1.5 5.000 2.1 7.5	500 2.5
0.200 0.8 0.800 0.9 1.800	1.3 3.000 1.6 5.500 2.2 8.0	2.6
0.300 0.8 1.000 1.0 2.000	1.4 3.500 1.8 6.000 2.3 8.5	500 2.7
0.400 0.7 1.200 1.1 2.200	1.4 4.000 1.9 6.500 2.3 9.0	2.7
0.500 0.7 1.400 1.2 2.400	1.5 4.500 2.0 7.000 2.4 9.5	500 2.8
	01982-2020 Innovyze	
COWI UK Limited		Page 38
---	---	---------------------------
Kelvin House		
RTC Business Park, London Rd		Contraction of the second
Derby DE24 8UP		Mirco
Date 11/04/2023 17:12	Designed by AHSI	Dcainago
File All abilities access trail Rev 2.MDX	Checked by	Diamage
Innovyze	Network 2020.1.3	
<u>Stora</u>	ge Structures for Storm	
Tank or Pon	d Manhole: S16, DS/PN: S4.015	
I	Invert Level (m) 48.229	
Depth (m)	Area (m ²) Depth (m) Area (m ²)	
0.000	236.1 1.500 569.1	
Tank or Pon	d Manhole: S62, DS/PN: S7.015	
I	invert Level (m) 46.833	
Depth (m)	Area (m²) Depth (m) Area (m²)	
0.000	221.0 1.500 542.1	
Tank or Pon	d Manhole: S82, DS/PN: S4.027	
I	invert Level (m) 39.959	
Depth (m)	Area (m²) Depth (m) Area (m²)	
0.000	1721.3 1.500 5490.2	
	01982-2020 Innovyze	

COWI UK Limited													P	age 39	
Kelvin House															
RTC Business Par	rk, Lo	ondon Rd												The second	
Derby DE24 8UP														Mirco	
Date 11/04/2023	17:12					Des	signed	by AHSI						Desinar	
File All abilit:	ies ac	cess trai	l Rev 2	.MDX		Che	ecked b	У						Dialita	Je
Innovyze						Net	work 2	020.1.3							
		<u>Sur</u>	nmary of	Criti	ical R	<u>esult</u>	s by M	aximum Le	vel (Ra	<u>nk 1)</u>	for Stor	<u>rm</u>			
						Q i a		Quitania							
Ares	al Redu	iction Facto	or 1.000	Manho	le Head	<u>510</u> 1088 (Coeff (C	<u>Criteria</u> Global) 0.50	00	MADD Fa	actor * 10)m³/ha_Sto	rage N	.000	
NT CC	Hot	Start (mins	3) 0	Fou	1 Sewag	je per	hectare	e (1/s) 0.00	00	THIPD IC	Inlet	Coeffiec	ient 0	.800	
Ho	ot Star	t Level (mn	n) 0.2	Additio	nal Flo	>w − %	of Tota	al Flow 0.00	00 Flow p	per Pers	son per Da	ay (l/per/	day) O	.000	
		Number of T	nnut Hydr	ographs	- 0 N	umber	of Offl	ine Control	s () Numb	er of T	ime/Area	Diagrams (J		
		Number of	Online C	ontrols	7 Num	ber of	Storag	e Structure	s 3 Numb	er of R	eal Time	Controls ()		
					S	Synthe	tic Rair	nfall Detail	ls						
			Rainfall	Model	_		FSR M5	5-60 (mm) 20	0.000 Cv	(Summer	c) 1.000				
			F	Region :	England	i and W	Wales	Ratio R (0.400 Cv	(Winter	r) 1.000				
		Maı	rgin for H	Flood R:	isk War	ning	(mm) 300	.0 DTS Stat	cus ON I	Inertia	Status OF	?Έ			
				Aı	nalysis	Times	step Fi	ne DVD Stat	tus OFF						
			F	Profile	(5)					Sum	mer and W	inter			
			Duration ((s) (mir	ns) 15,	30, 6	50, 120,	180, 240,	360, 480,	, 600, [.]	720, 960,	1440			
		Return	Period(s	s) (year	rs)						1, 30	, 100			
			Climate C	Change	(응)						Ο,	0, 45			
							Water	Surcharged	Flooded			Maximum	Pipe		
	US/MH					US/CL	Level	Depth	Volume	Flow /	Maximum	Velocity	Flow		
PN	Name		Event			(m)	(m)	(m)	(m³)	Cap.	Vol (m³)	(m/s)	(l/s)	Status	
S4.000	S1	15 minute	100 year	Summer	I+45% 5	59.510	59.047	-0.463	0.000	0.01	0.032	0.1	1.9	OK	
S4.001	S2	15 minute	100 year	Summer	I+45% 5	59.550	59.011	-0.539	0.000	0.00	0.094	0.3	4.3	OK	
S4.002	S3	15 minute	100 year	Summer	I+45% 5	59.080	58.731	-0.349	0.000	0.07	0.381	1.0	143.3	OK	
						©198	2-2020	Innovyze							

COWI UK Limited		Page 40
Kelvin House		
RTC Business Park, London Rd		No. of Street,
Derby DE24 8UP		Mirco
Date 11/04/2023 17:12	Designed by AHSI	Desinado
File All abilities access trail Rev 2.MDX	Checked by	Diamaye
Innovyze	Network 2020.1.3	-

PN	US/MH Name			:	Event			US/CL (m)	Water Level (m)	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	Maximum Vol (m³)	Maximum Velocity (m/s)	Pipe Flow (l/s)	Status
S4.003	S4	15	minute	100	year	Summer	I+45%	55.660	55.351	-0.309	0.000	0.12	0.472	1.1	220.5	OK
S4.004	S5	15	minute	100	year	Summer	I+45%	54.300	54.306	0.206	6.179	1.40	10.193	2.4	168.2	FLOOD
S4.005	S6	15	minute	100	year	Summer	I+45%	54.070	53.754	-0.316	0.000	0.11	0.361	1.0	183.6	OK
S4.006	S7	15	minute	100	year	Summer	I+45%	52.550	52.415	0.065	0.000	1.09	2.462	2.6	178.8	FLOOD RISK*
S4.007	S8	15	minute	100	year	Summer	I+45%	52.120	51.842	-0.278	0.000	0.16	0.360	0.7	186.3	FLOOD RISK*
S4.008	S9	15	minute	100	year	Summer	I+45%	51.551	51.315	-0.236	0.000	0.23	2.234	0.6	191.6	FLOOD RISK*
S4.009	S10	30	minute	100	year	Summer	I+45%	50.965	50.861	-0.104	0.000	0.50	10.287	0.3	187.4	FLOOD RISK*
S4.010	S11	30	minute	100	year	Summer	I+45%	51.225	50.796	-0.429	0.000	0.15	12.907	0.3	181.9	OK
S4.011	S12	30	minute	100	year	Summer	I+45%	51.443	50.711	-0.732	0.000	0.07	13.314	0.3	175.6	OK
S4.012	S13	30	minute	100	year	Summer	I+45%	51.916	50.611	-1.305	0.000	0.02	9.321	0.3	173.9	OK
S4.013	S14	30	minute	100	year	Summer	I+45%	50.744	50.321	-0.122	0.000	0.66	6.080	4.0	173.1	OK*
S4.014	S15	30	minute	100	year	Summer	I+45%	50.272	49.248	-0.095	0.000	0.80	0.227	3.4	174.1	OK*
S4.015	S16	60	minute	100	year	Summer	I+45%	49.729	48.721	0.192	0.000	1.01	139.601	0.9	61.7	SURCHARGED*
S5.000	S17		15 min	ute	1 yea	r Summe:	r I+0%	49.350	48.850	-0.500	0.000	0.00	0.000	0.0	0.0	OK
S4.016	S18	60	minute	100	year	Summer	I+45%	49.096	48.405	-0.691	0.000	0.04	1.869	0.2	64.4	OK
S4.017	S19	15	minute	100	year	Summer	I+45%	48.818	48.315	-0.503	0.000	0.05	2.173	0.8	129.9	OK
S4.018	S20	15	minute	100	year	Summer	I+45%	47.464	47.235	-0.229	0.000	0.22	1.790	0.7	222.8	FLOOD RISK*
S4.019	S21	15	minute	100	year	Summer	I+45%	46.414	46.361	-0.053	0.000	0.68	10.371	0.4	254.3	FLOOD RISK*
S4.020	S22	15	minute	100	year	Summer	I+45%	48.116	46.212	-1.904	0.000	0.01	19.973	0.3	253.0	OK
S4.021	S23	15	minute	100	year	Summer	I+45%	48.184	46.079	-2.104	0.000	0.01	11.074	0.4	256.8	OK
S4.022	S24	30	minute	100	year	Summer	I+45%	46.737	45.874	-0.863	0.000	0.04	6.402	0.7	264.6	OK
S4.023	S25	30	minute	100	year	Summer	I+45%	45.634	45.374	-0.260	0.000	0.19	2.301	0.9	266.9	FLOOD RISK*
S6.000	S26	15	minute	100	year	Summer	I+45%	48.203	47.826	-0.377	0.000	0.05	0.118	0.7	76.3	OK
S6.001	S27	15	minute	100	year	Summer	I+45%	46.584	46.279	-0.305	0.000	0.12	0.651	0.8	171.7	OK
S6.002	S28	15	minute	100	year	Summer	I+45%	45.294	45.258	-0.036	0.000	0.65	5.685	0.3	244.6	FLOOD RISK*
								©1	982-20	20 Innovy:	ze					

COWI UK Limited		Page 41
Kelvin House		
RTC Business Park, London Rd		The second second
Derby DE24 8UP		Mirco
Date 11/04/2023 17:12	Designed by AHSI	Desinado
File All abilities access trail Rev 2.MDX	Checked by	Diamaye
Innovyze	Network 2020.1.3	

PN	US/MH Name	Event	US/CL (m)	Water Level (m)	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	Maximum Vol (m³)	Maximum Velocity (m/s)	Pipe Flow (l/s)	Status
S6.003	S29	15 minute 100 year Summer I+45%	46.056	45.196	-0.860	0.000	0.08	21.021	0.4	316.0	OK
S6.004	S30	30 minute 100 year Summer I+45%	45.328	45.084	-0.244	0.000	0.30	32.221	0.3	255.0	FLOOD RISK*
S4.024	S31	30 minute 100 year Summer I+45%	45.283	45.049	0.006	0.000	1.04	37.336	2.5	441.3	FLOOD RISK*
S7.000	S32	15 minute 100 year Summer I+45%	55.190	54.912	-0.278	0.000	0.16	0.217	0.8	195.0	FLOOD RISK*
S7.001	S33	15 minute 100 year Summer I+45%	54.810	54.609	-0.201	0.000	0.31	2.675	1.0	413.4	FLOOD RISK*
S7.002	S34	15 minute 100 year Summer I+45%	54.200	54.142	-0.058	0.000	0.63	5.684	0.8	577.9	FLOOD RISK*
S7.003	S35	15 minute 100 year Summer I+45%	54.035	54.104	0.274	68.718	1.09	79.626	3.7	256.6	FLOOD
S7.004	S36	30 minute 100 year Winter I+45%	54.150	52.950	0.000	0.000	1.15	0.627	2.4	267.7	SURCHARGED*
S7.005	S37	15 minute 100 year Summer I+45%	53.710	52.403	-0.093	0.000	0.91	1.092	3.1	274.0	OK*
S7.006	S38	15 minute 100 year Summer I+45%	53.110	51.752	-1.358	0.000	0.01	0.378	1.3	326.4	OK
S7.007	S39	30 minute 100 year Summer I+45%	52.440	51.540	0.507	0.000	2.74	18.312	2.7	294.1	SURCHARGED*
S7.008	S40	30 minute 100 year Summer I+45%	52.260	50.877	-1.383	0.000	0.01	0.519	0.9	294.2	OK
S8.000	S41	15 minute 100 year Summer I+45%	53.000	52.162	-0.838	0.000	0.00	0.047	0.4	12.7	OK
S8.001	S42	15 minute 100 year Summer I+45%	51.450	50.868	-0.382	0.000	0.13	0.246	0.4	12.5	OK*
S9.000	S43	15 minute 100 year Summer I+45%	53.580	53.202	-0.378	0.000	0.05	0.117	0.7	69.4	OK
S9.001	S44	15 minute 100 year Summer I+45%	52.740	52.257	-0.483	0.000	0.04	0.469	0.8	111.8	OK
S9.002	S45	120 minute 100 year Summer I+45%	52.170	51.691	-0.480	0.000	0.01	9.113	0.4	49.1	OK
S10.000	S46	120 minute 100 year Summer I+45%	52.330	51.691	-0.639	0.000	0.00	0.356	0.3	24.6	OK
S9.003	S47	120 minute 100 year Summer I+45%	52.000	51.691	0.643	0.000	0.18	99.306	0.2	11.2	SURCHARGED*
S8.002	S48	15 minute 100 year Summer I+45%	51.510	50.777	-0.733	0.000	0.01	0.264	0.5	33.8	OK
S8.003	S49	15 minute 100 year Summer I+45%	51.050	50.299	-0.751	0.000	0.01	0.389	0.5	51.2	OK
S7.009	S50	15 minute 100 year Summer I+45%	50.221	49.877	-0.344	0.000	0.22	12.668	0.9	545.5	OK
S7.010	S51	15 minute 100 year Summer I+45%	49.391	49.191	-0.200	0.000	0.42	15.268	0.7	723.8	FLOOD RISK*
S7.011	S52	30 minute 100 year Summer I+45%	49.964	48.730	-1.234	0.000	0.04	36.559	0.8	716.4	OK
S11.000	S53	15 minute 100 year Summer I+45%	52.150	51.751	-0.399	0.000	0.03	0.096	0.6	50.3	OK
			©19	82-202	0 Innovyze	e					

COWI UK Limited		Page 42
Kelvin House		
RTC Business Park, London Rd		Constanting of the
Derby DE24 8UP		Mirco
Date 11/04/2023 17:12	Designed by AHSI	Desinado
File All abilities access trail Rev 2.MDX	Checked by	Diamaye
Innovyze	Network 2020.1.3	

PN	US/MH Name		Event			US/CL (m)	Water Level (m)	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	Maximum Vol (m³)	Maximum Velocity (m/s)	Pipe Flow (l/s)	Status
S11.001	S54	15 minute 100) year	Summer	I+45%	50.140	49.844	-0.296	0.000	0.13	0.716	0.7	141.8	FLOOD RISK*
S11.002	S55	15 minute 100) year	Summer	I+45%	49.158	48.975	-0.183	0.000	0.31	3.526	0.6	228.9	FLOOD RISK*
S11.003	S56	60 minute 100) year	Summer	I+45%	49.505	48.702	-0.804	0.000	0.01	31.381	0.5	145.8	OK
S11.004	S57	60 minute 100) year	Summer	I+45%	49.159	48.701	-0.458	0.000	0.04	24.710	0.3	153.6	OK
S11.005	S58	60 minute 100) year	Summer	I+45%	48.520	48.701	0.336	180.575	1.17	227.946	1.3	257.0	FLOOD
S7.012	S59	60 minute 100) year	Summer	I+45%	48.755	48.701	0.417	0.000	0.96	82.993	2.1	356.4	FLOOD RISK*
\$7.013	S60	30 minute 100) year	Winter	I+45%	49.238	47.998	0.000	0.000	1.09	3.165	2.3	438.3	SURCHARGED*
S7.014	S61	30 minute 100) year	Winter	I+45%	49.160	47.666	0.000	0.000	1.09	3.404	2.3	436.4	SURCHARGED*
\$7.015	S62	60 minute 100) year	Summer	I+45%	48.333	48.020	0.687	0.000	2.01	401.467	1.5	294.3	SURCHARGED*
S12.000	S63	15 minute 100) year	Summer	I+45%	48.604	48.144	-0.460	0.000	0.01	0.035	0.4	10.2	OK
S7.016	S64	30 minute 100) year	Summer	I+45%	47.491	47.071	-0.420	0.000	0.11	2.075	1.1	347.8	OK
S7.017	S65	60 minute 100) year	Summer	I+45%	45.219	45.203	-0.016	0.000	0.88	5.786	0.4	353.9	FLOOD RISK*
S7.018	S66	60 minute 100) year	Summer	I+45%	45.680	45.100	-0.579	0.000	0.15	27.928	0.4	353.4	OK
S7.019	S67	60 minute 100) year	Summer	I+45%	45.311	44.931	-0.380	0.000	0.19	11.219	0.6	355.0	OK
S7.020	S68	60 minute 100) year	Summer	I+45%	44.903	44.801	-0.102	0.000	0.58	11.471	0.5	354.8	FLOOD RISK*
S13.000	S69	15 minute 100) year	Summer	I+45%	48.384	47.987	-0.397	0.000	0.03	0.098	0.2	12.2	OK
S13.001	S70	15 minute 100) year	Summer	I+45%	48.578	47.884	-0.694	0.000	0.01	0.806	0.5	27.6	OK
S13.002	S71	15 minute 100) year	Summer	I+45%	47.142	46.757	-0.385	0.000	0.04	0.342	0.4	39.8	OK
S13.003	S72	15 minute 100) year	Summer	I+45%	46.474	46.258	-0.016	0.000	1.00	3.486	0.5	32.9	FLOOD RISK*
S13.004	S73	15 minute 100) year	Summer	I+45%	46.258	45.771	-0.487	0.000	0.06	0.212	0.2	50.4	OK
S13.005	S74	30 minute 100) year	Summer	I+45%	47.655	45.588	-2.067	0.000	0.00	5.211	0.2	54.2	OK
S13.006	S75	30 minute 100) year	Summer	I+45%	47.730	45.484	-2.245	0.000	0.00	2.082	0.2	58.7	OK
S13.007	S76	30 minute 100) year	Summer	I+45%	46.145	45.306	-0.839	0.000	0.01	1.186	0.6	61.1	OK
S13.008	S77	30 minute 100) year	Summer	I+45%	45.227	44.849	-0.378	0.000	0.05	3.075	0.6	63.2	OK
S4.025	S78	60 minute 100) year	Summer	I+45%	44.819	44.556	-0.113	0.000	0.95	21.072	5.2	839.2	FLOOD RISK*
						©19	982-202	20 Innovyz	е					

COWI UK Limited		Page 43
Kelvin House		
RTC Business Park, London Rd		Contraction of the second
Derby DE24 8UP		Mirco
Date 11/04/2023 17:12	Designed by AHSI	Dcainago
File All abilities access trail Rev 2.MDX	Checked by	Diamaye
Innovyze	Network 2020.1.3	

				Water	Surcharged	Flooded	Flow /	Mavimum	Maximum Velocity	Pipe Flow	
PN	Name	Event	(m)	(m)	(m)	(m ³)	Cap.	Vol (m ³)	(m/s)	(1/s)	Status
S4.026	S79	60 minute 100 year Summer I+45%	43.220	42.929	-0.141	0.000	0.86	0.787	5.6	839.5	FLOOD RISK*
S14.000	S80	15 minute 1 year Summer I+0%	41.670	41.170	-0.500	0.000	0.00	0.000	0.0	0.0	OK
S14.001	S81	15 minute 1 year Summer I+0%	42.410	41.120	-0.350	0.000	0.00	0.000	0.0	0.0	OK*
S4.027	S82	600 minute 100 year Winter I+45%	41.459	41.028	0.769	0.000	1.06	3071.382	0.8	47.9	SURCHARGED*
S15.000	S83	15 minute 100 year Summer I+45%	49.070	48.610	-0.460	0.000	0.01	0.035	0.5	12.2	OK
S15.001	S84	30 minute 100 year Summer I+45%	47.000	46.831	-0.169	0.000	0.00	9.159	0.2	4.7	FLOOD RISK*
S15.002	S85	120 minute 100 year Winter I+45%	46.280	45.937	-0.343	0.000	0.00	24.505	0.2	4.1	OK
S15.003	S86	480 minute 100 year Winter I+45%	44.760	44.600	0.665	0.000	0.02	43.522	0.3	1.0	FLOOD RISK*

COWI UK Limited								Page 1				
Kelvin House												
RTC Business Park, London Rd								Section and				
Derby DE24 8UP		Mirco										
Date 11/04/2023 17:09	Designed	by AHS	I					Desinado				
File All abilities access trail Rev 2.MDX	ile All abilities access trail Rev 2.MDX Checked by											
Innovyze	Network 2	020.1.3	3				1					
Summary of Critical Results by Maximum Level (Rank 1) for Storm												
Simulation CriteriaVolumetric Runoff Coeff 1.000Manhole Headloss Coeff (Global) 0.500Inlet Coefficcient 0.800Areal Reduction Factor 1.000Foul Sewage per hectare (l/s) 0.000 Flow per Person per Day (l/per/day) 0.000Hot Start (mins)0 Additional Flow - % of Total Flow 0.000Hot Start Level (mm)0MADD Factor * 10m³/ha Storage 0.000Number of Input Hydrographs 0Number of Offline Controls 0Number of Time/Area Diagrams 0Number of Online Controls 7Number of Storage Structures 3Number of Real Time Controls 0Margin for Flood Risk Warning (mm) 300.0 DTS Status ON Inertia Status OFF Analysis Timestep Fine DVD Status OFFO												
30 v	Rainfall analy	file(s) r sed	440 Winter									
	Cur 1110 prus 1.	ycar 1	.110									
		Water	Surcharged	Flooded			Pipe					
US/MH	US/CL	Level	Depth	Volume	Flow /	Maximum	Flow	Chatura				
PN Name Event	(m)	(m)	(m)	(m ³)	Cap.	VOL (m ³)	(1/S)	Status				
S4.000 S1 30 year 1440 plus 10 year 144	0 Winter 59.510	59.013	-0.497	0.000	0.00	0.000	0.1	OK				
S4.001 S2 30 year 1440 plus 10 year 144	0 Winter 59.550	58.987	-0.563	0.000	0.00	0.000	0.1	OK				
S4.002 S3 30 year 1440 plus 10 year 144	U Winter 59.080	58.600	-0.480	0.000	0.00	0.019	3.7	OK				
54.003 54 30 year 1440 plus 10 year 144	0 Winter 55.660	53.18/	-0.4/3	0.000	0.00	0.028	5.8	OK*				
54.004 55 50 year 1440 plus 10 year 144 54.005 56 30 year 1440 plus 10 year 144	0 Winter 54.300	53 600	-0.258	0.000	0.05	0.046	5.0	OK.				
S4.006 S7 30 year 1440 plus 10 year 144	0 Winter 52.550	52.087	-0.263	0.000	0.04	0.041	6.2	OK*				
	©1982-2020	Innovy	yze									

COWI UK Limited		Page 2
Kelvin House		
RTC Business Park, London Rd		The second second
Derby DE24 8UP		Mirco
Date 11/04/2023 17:09	Designed by AHSI	Desinado
File All abilities access trail Rev 2.MDX	Checked by	Diamaye
Innovyze	Network 2020.1.3	

	US/MH	- t	US/CL	Water Level	Surcharged Depth	Flooded Volume	Flow /	Maximum	Pipe Flow	Chatas
PN	Name	Event	(m)	(m)	(m)	(m ³)	Cap.	VOL (m ³)	(1/s)	Status
S4.00	7 S8	30 year 1440 plus 10 year 1440 Wint	er 52.120	51.659	-0.461	0.000	0.01	0.041	6.6	OK
S4.008	8 S9	30 year 1440 plus 10 year 1440 Wint	er 51.551	51.099	-0.452	0.000	0.01	0.124	7.1	OK
S4.009	9 S10	30 year 1440 plus 10 year 1440 Wint	er 50.965	50.552	-0.413	0.000	0.02	0.367	7.4	OK
S4.010	0 S11	30 year 1440 plus 10 year 1440 Wint	er 51.225	50.496	-0.729	0.000	0.01	0.599	7.7	OK
S4.011	1 S12	30 year 1440 plus 10 year 1440 Wint	er 51.443	50.424	-1.019	0.000	0.00	0.580	8.1	OK
S4.012	2 S13	30 year 1440 plus 10 year 1440 Wint	er 51.916	50.342	-1.574	0.000	0.00	0.102	8.7	OK
S4.013	3 S14	30 year 1440 plus 10 year 1440 Wint	er 50.744	50.178	-0.265	0.000	0.03	0.530	8.7	OK*
S4.014	4 S15	30 year 1440 plus 10 year 1440 Wint	er 50.272	49.082	-0.261	0.000	0.04	0.036	8.9	OK*
S4.01	5 S16	30 year 1440 plus 10 year 1440 Wint	er 49.729	48.458	-0.071	0.000	0.10	59.042	5.9	OK*
S5.000	0 S17	30 year 1440 plus 10 year 1440 Wint	er 49.350	48.850	-0.500	0.000	0.00	0.000	0.0	OK
S4.01	6 S18	30 year 1440 plus 10 year 1440 Wint	er 49.096	48.253	-0.843	0.000	0.00	0.198	6.4	OK
S4.01	7 S19	30 year 1440 plus 10 year 1440 Wint	er 48.818	48.180	-0.638	0.000	0.00	0.228	8.1	OK
S4.018	8 S20	30 year 1440 plus 10 year 1440 Wint	er 47.464	47.017	-0.447	0.000	0.01	0.115	10.3	OK
S4.019	9 S21	30 year 1440 plus 10 year 1440 Wint	er 46.414	46.015	-0.399	0.000	0.03	0.337	12.5	OK
S4.020	0 S22	30 year 1440 plus 10 year 1440 Wint	er 48.116	45.894	-2.223	0.000	0.00	0.521	14.0	OK
S4.023	1 S23	30 year 1440 plus 10 year 1440 Wint	er 48.184	45.783	-2.400	0.000	0.00	0.231	15.0	OK
S4.022	2 S24	30 year 1440 plus 10 year 1440 Wint	er 46.737	45.668	-1.069	0.000	0.00	0.415	16.0	OK
S4.023	3 S25	30 year 1440 plus 10 year 1440 Wint	er 45.634	45.191	-0.443	0.000	0.01	0.181	16.3	OK
S6.000	0 S26	30 year 1440 plus 10 year 1440 Wint	er 48.203	47.720	-0.483	0.000	0.00	0.012	2.2	OK
S6.001	1 S27	30 year 1440 plus 10 year 1440 Wint	er 46.584	46.112	-0.472	0.000	0.00	0.029	4.8	OK
S6.002	2 S28	30 year 1440 plus 10 year 1440 Wint	er 45.294	44.882	-0.412	0.000	0.02	0.104	7.3	OK
S6.003	3 S29	30 year 1440 plus 10 year 1440 Wint	er 46.056	44.823	-1.233	0.000	0.00	0.603	10.8	OK
S6.004	4 S30	30 year 1440 plus 10 year 1440 Wint	er 45.328	44.721	-0.607	0.000	0.01	1.233	11.3	OK
S4.024	4 S31	30 year 1440 plus 10 year 1440 Wint	er 45.283	44.625	-0.418	0.000	0.06	0.805	27.6	OK*
S7.000	D S32	30 year 1440 plus 10 year 1440 Wint	er 55.190	54.725	-0.465	0.000	0.00	0.030	5.6	OK
		©19	82-2020	Innov	yze					

COWI UK Limited		Page 3
Kelvin House		
RTC Business Park, London Rd		The second second
Derby DE24 8UP		Mirco
Date 11/04/2023 17:09	Designed by AHSI	Desinado
File All abilities access trail Rev 2.MDX	Checked by	Diamaye
Innovyze	Network 2020.1.3	

											Water	Surcharged	Flooded			Pipe	
	US/MH									US/CL	Level	Depth	Volume	Flow /	Maximum	Flow	
PN	Name				Εv	7ent	5			(m)	(m)	(m)	(m³)	Cap.	Vol (m³)	(1/s)	Status
s7.001	S33	30 ye	ear 14	40	plus	10	year	1440	Winter	54.810	54.358	-0.452	0.000	0.01	0.118	11.3	OK
S7.002	S34	30 ye	ear 14	40	plus	10	year	1440	Winter	54.200	53.770	-0.430	0.000	0.02	0.153	16.1	OK
S7.003	S35	30 ye	ear 14	40	plus	10	year	1440	Winter	54.035	53.581	-0.249	0.000	0.07	0.181	16.1	OK*
S7.004	S36	30 ye	ear 14	40	plus	10	year	1440	Winter	54.150	52.641	-0.309	0.000	0.07	0.061	16.9	OK*
S7.005	S37	30 ye	ear 14	40	plus	10	year	1440	Winter	53.710	52.178	-0.318	0.000	0.06	0.089	16.9	OK*
S7.006	S38	30 ye	ear 14	40	plus	10	year	1440	Winter	53.110	51.586	-1.524	0.000	0.00	0.058	18.2	OK
S7.007	S39	30 ye	ear 14	40	plus	10	year	1440	Winter	52.440	50.761	-0.272	0.000	0.17	0.123	18.2	OK*
S7.008	S40	30 ye	ear 14	40	plus	10	year	1440	Winter	52.260	50.684	-1.576	0.000	0.00	0.092	18.2	OK
S8.000	S41	30 ye	ear 14	40	plus	10	year	1440	Winter	53.000	52.113	-0.887	0.000	0.00	0.000	0.4	OK
S8.001	S42	30 ye	ear 14	40	plus	10	year	1440	Winter	51.450	50.759	-0.491	0.000	0.00	0.005	0.4	OK*
S9.000	S43	30 ye	ear 14	40	plus	10	year	1440	Winter	53.580	53.097	-0.483	0.000	0.00	0.012	2.0	OK
S9.001	S44	30 ye	ear 14	40	plus	10	year	1440	Winter	52.740	52.124	-0.616	0.000	0.00	0.021	3.2	OK
S9.002	S45	30 ye	ear 14	40	plus	10	year	1440	Winter	52.170	51.155	-1.015	0.000	0.00	0.023	3.9	OK
S10.000	S46	30 ye	ear 14	40	plus	10	year	1440	Winter	52.330	51.346	-0.984	0.000	0.00	0.012	1.7	OK
S9.003	S47	30 ye	ear 14	40	plus	10	year	1440	Winter	52.000	50.978	-0.070	0.000	0.08	2.989	5.2	OK*
S8.002	S48	30 ye	ear 14	40	plus	10	year	1440	Winter	51.510	50.722	-0.788	0.000	0.00	0.087	5.9	OK
S8.003	S49	30 ye	ear 14	40	plus	10	year	1440	Winter	51.050	50.224	-0.826	0.000	0.00	0.102	6.4	OK
S7.009	S50	30 ye	ear 14	40	plus	10	year	1440	Winter	50.221	49.576	-0.645	0.000	0.01	0.358	31.3	OK
S7.010	S51	30 ye	ear 14	40	plus	10	year	1440	Winter	49.391	48.802	-0.589	0.000	0.02	0.601	38.6	OK
S7.011	S52	30 ye	ear 14	40	plus	10	year	1440	Winter	49.964	48.277	-1.687	0.000	0.00	1.000	42.6	OK
S11.000	S53	30 ye	ear 14	40	plus	10	year	1440	Winter	52.150	51.664	-0.486	0.000	0.00	0.009	1.5	OK
S11.001	S54	30 ye	ear 14	40	plus	10	year	1440	Winter	50.140	49.670	-0.470	0.000	0.00	0.031	4.1	OK
S11.002	S55	30 ye	ear 14	40	plus	10	year	1440	Winter	49.158	48.710	-0.448	0.000	0.01	0.141	7.3	OK
S11.003	S56	30 ye	ear 14	40	plus	10	year	1440	Winter	49.505	48.186	-1.319	0.000	0.00	0.232	8.2	OK
S11.004	S57	30 ye	ear 14	40	plus	10	year	1440	Winter	49.159	48.021	-1.138	0.000	0.00	0.089	9.7	OK

COWI UK Limited		Page 4
Kelvin House		
RTC Business Park, London Rd		The second second
Derby DE24 8UP		Mirco
Date 11/04/2023 17:09	Designed by AHSI	Desinado
File All abilities access trail Rev 2.MDX	Checked by	Diamaye
Innovyze	Network 2020.1.3	

										Water	Surcharged	Flooded	Eleve /	Mossimum	Pipe Flow	
PN	Name			E	vent	:			(m)	(m)	(m)	(m ³)	Cap.	Vol (m ³)	flow (l/s)	Status
s11.005	S58	30 yea	r 1440	plus	10	year	1440	Winter	48.520	47.933	-0.432	0.000	0.04	0.470	9.7	OK*
S7.012	S59	30 yea	r 1440	plus	10	year	1440	Winter	48.755	47.908	-0.376	0.000	0.14	0.948	52.2	OK*
S7.013	S60	30 yea	r 1440	plus	10	year	1440	Winter	49.238	47.621	-0.377	0.000	0.14	0.201	55.8	OK*
S7.014	S61	30 yea	r 1440	plus	10	year	1440	Winter	49.160	47.333	-0.333	0.000	0.14	0.319	55.8	OK*
S7.015	S62	30 yea	r 1440	plus	10	year	1440	Winter	48.333	47.320	-0.013	0.000	0.35	130.960	51.7	OK*
S12.000	S63	30 yea	r 1440	plus	10	year	1440	Winter	48.604	48.107	-0.497	0.000	0.00	0.000	0.3	OK
S7.016	S64	30 yea	r 1440	plus	10	year	1440	Winter	47.491	46.912	-0.579	0.000	0.02	0.259	57.5	OK
S7.017	S65	30 yea	r 1440	plus	10	year	1440	Winter	45.219	44.931	-0.288	0.000	0.14	0.802	57.8	FLOOD RISK*
S7.018	S66	30 yea	r 1440	plus	10	year	1440	Winter	45.680	44.835	-0.844	0.000	0.02	4.399	58.0	OK
S7.019	S67	30 yea	r 1440	plus	10	year	1440	Winter	45.311	44.726	-0.586	0.000	0.03	2.059	58.1	OK
S7.020	S68	30 yea	r 1440	plus	10	year	1440	Winter	44.903	44.574	-0.329	0.000	0.10	2.102	58.4	OK
S13.000	S69	30 yea	r 1440	plus	10	year	1440	Winter	48.384	47.899	-0.485	0.000	0.00	0.010	0.4	OK
S13.001	S70	30 yea	r 1440	plus	10	year	1440	Winter	48.578	47.809	-0.770	0.000	0.00	0.024	0.8	OK
S13.002	S71	30 yea	r 1440	plus	10	year	1440	Winter	47.142	46.658	-0.484	0.000	0.00	0.028	1.2	OK
S13.003	S72	30 yea	r 1440	plus	10	year	1440	Winter	46.474	46.013	-0.261	0.000	0.04	0.122	1.3	OK*
S13.004	s73	30 yea	r 1440	plus	10	year	1440	Winter	46.258	45.594	-0.665	0.000	0.00	0.030	2.2	OK
S13.005	S74	30 yea	r 1440	plus	10	year	1440	Winter	47.655	45.407	-2.248	0.000	0.00	0.296	2.5	OK
S13.006	S75	30 yea	r 1440	plus	10	year	1440	Winter	47.730	45.316	-2.414	0.000	0.00	0.040	2.9	OK
S13.007	S76	30 yea	r 1440	plus	10	year	1440	Winter	46.145	45.215	-0.930	0.000	0.00	0.147	3.1	OK
S13.008	S77	30 yea	r 1440	plus	10	year	1440	Winter	45.227	44.751	-0.476	0.000	0.00	1.370	3.3	OK
S4.025	S78	30 yea	r 1440	plus	10	year	1440	Winter	44.819	44.274	-0.395	0.000	0.10	0.827	87.7	OK*
S4.026	S79	30 yea	r 1440	plus	10	year	1440	Winter	43.220	42.671	-0.399	0.000	0.09	0.116	87.8	OK*
S14.000	S80	30 yea	r 1440	plus	10	year	1440	Winter	41.670	41.170	-0.500	0.000	0.00	0.000	0.0	OK
S14.001	S81	30 yea	r 1440	plus	10	year	1440	Winter	42.410	41.120	-0.350	0.000	0.00	0.000	0.0	OK*
S4.027	S82	30 yea	r 1440	plus	10	year	1440	Winter	41.459	40.509	0.250	0.000	0.81	1249.598	36.6	SURCHARGED*

COWI UK Limited		Page 5
Kelvin House		
RTC Business Park, London Rd		Concerned and
Derby DE24 8UP		Mirco
Date 11/04/2023 17:09	Designed by AHSI	Desinado
File All abilities access trail Rev 2.MDX	Checked by	Diamage
Innovyze	Network 2020.1.3	

											Water	Surcharged	Flooded			Pipe	
	US/MH									US/CL	Level	Depth	Volume	Flow /	Maximum	Flow	
PN	Name				E	ven	t			(m)	(m)	(m)	(m³)	Cap.	Vol (m³)	(l/s)	Status
s15.000	S83	30	year	1440	plus	10	year	1440	Winter	49.070	48.573	-0.497	0.000	0.00	0.000	0.4	OK
S15.001	S84	30	year	1440	plus	10	year	1440	Winter	47.000	46.054	-0.946	0.000	0.00	0.062	0.8	OK
S15.002	S85	30	year	1440	plus	10	year	1440	Winter	46.280	45.398	-0.882	0.000	0.00	0.278	1.6	OK
s15.003	S86	30	year	1440	plus	10	year	1440	Winter	44.760	44.137	0.202	0.000	0.01	7.510	0.8	SURCHARGED*

COWI UK Limited		Page 1									
Kelvin House											
RTC Business Park, London Rd		The second									
Derby DE24 8UP		Mirco									
Date 11/04/2023 17:14	Designed by AHSI	Drainago									
File Hole Farm West of farm Lane Rev 5.MDX	Checked by	Diamage									
Innovyze	Network 2020.1.3										
STORM SEWER DESIGN by the Modified Rational Method											
Pipe Sizes L	IC pipes Manhole Sizes LTC manholes										
FSR Rainfall Model - England and Wales Return Period (years) 1 Foul Sewage (l/s/ha) 0.000 Maximum Backdrop Height (m) 1.500 M5-60 (mm) 20.000 Volumetric Runoff Coeff. 1.000 Min Design Depth for Optimisation (m) 0.000 Ratio R 0.400 PIMP (%) 100 Min Vel for Auto Design only (m/s) 1.00 Maximum Rainfall (mm/hr) 300 Add Flow / Climate Change (%) 20 Min Slope for Optimisation (1:X) 500 Maximum Time of Concentration (mins) 30 Minimum Backdrop Height (m) 0.200 Designed with Level Soffits											
Networ	ck Design Table for Storm										
« - In	dicates pipe capacity < flow										
PN Length Fall Slope I.Area T.E. Base k n HYD DIA Section Type Auto (m) (m) (1:X) (ha) (mins) Flow (l/s) (mm) SECT (mm) Design											
Network Results Table											
PN Rain T.C. US/IL E I (mm/hr) (mins) (m) (.Area E Base Foul Add Flow Vel Cap Flow ha) Flow (l/s) (l/s) (l/s) (m/s) (l/s) (l/s)										
	©1982-2020 Innovyze										
	-										

COWI UK Limited		Page 2
Kelvin House		
RTC Business Park, London Rd		Concerned and
Derby DE24 8UP		Mirco
Date 11/04/2023 17:14	Designed by AHSI	Desinado
File Hole Farm West of farm Lane Rev 5.MDX	Checked by	Diamage
Innovyze	Network 2020.1.3	

	PN	Length	Fall	Slope	I.Area	T.E.	Base	k	n	HYD	DIA	Section Type	Auto
		(m)	(m)	(1:X)	(ha)	(mins)	Flow (l/s)	(mm)		SECT	(mm)		Design
S4	.000	72.412	3.655	19.8	0.091	5.00	0.0		0.050	3 \=/	500	1:3 Swale	•
S4	.001	85.957	5.789	14.8	0.051	0.00	0.0		0.050	3 \=/	500	1:3 Swale	- Ā
S4	.002	30.535	1.565	19.5	0.014	0.00	0.0		0.050	3 \=/	500	1:3 Swale	- The second sec
S4	.003	22.547	1.180	19.1	0.007	0.00	0.0		0.050	3 \=/	500	1:3 Swale	- The second sec
S4	.004	29.400	1.440	20.4	0.013	0.00	0.0		0.050	3 \=/	500	1:3 Swale	- A
S4	.005	69.159	3.297	21.0	0.034	0.00	0.0		0.050	3 \=/	500	1:3 Swale	- Ă
S4	.006	31.369	2.022	15.5	0.033	0.00	0.0		0.050	3 \=/	500	1:3 Swale	- Ă
S4	.007	6.907	0.548	12.6	0.000	0.00	0.0		0.050	3 \=/	500	1:3 Swale	
S5	.000	30.697	1.291	23.8	0.091	5.00	0.0		0.050	3 \=/	500	1:3 Swale	6

Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow
(mm/hr)	(mins)	(m)	(ha)	Flow (l/s)	(l/s)	(l/s)	(m/s)	(1/s)	(l/s)
51.84	5.64	71.185	0.091	0.0	0.0	3.4	1.89	1891.2	20.4
49.23	6.29	67.530	0.142	0.0	0.0	5.0	2.18	2184.5	30.2
48.25	6.56	61.741	0.156	0.0	0.0	5.4	1.91	1905.7	32.6
47.57	6.76	60.176	0.163	0.0	0.0	5.6	1.93	1925.7	33.5
46.67	7.02	58.996	0.175	0.0	0.0	5.9	1.86	1862.9	35.5
44.69	7.65	57.556	0.210	0.0	0.0	6.8	1.84	1837.9	40.6
43.97	7.89	54.259	0.243	0.0	0.0	7.7	2.14	2137.1	46.3
43.83	7.94	52.237	0.243	0.0	0.0	7.7	2.37	2371.0	46.3
53.34	5.30	84.759	0.091	0.0	0.0	3.5	1.73	1726.3	21.1
	Rain (nm/hr) 51.84 49.23 48.25 47.57 46.67 44.69 43.97 43.83 53.34	Rain T.C. (mm/hr) (mins) 51.84 5.64 49.23 6.29 48.25 6.56 47.57 6.76 46.67 7.02 44.69 7.65 43.97 7.89 43.83 7.94 53.34 5.30	Rain F.C. OS/IL (mm/hr) (mins) (m) 51.84 5.64 71.185 49.23 6.29 67.530 48.25 6.56 61.741 47.57 6.76 60.176 46.67 7.02 58.996 44.69 7.65 57.556 43.97 7.89 54.259 43.83 7.94 52.237 53.34 5.30 84.759	RainT.C.US/ILEI.Area(mm/hr)(mins)(m)(ha)51.845.6471.1850.09149.236.2967.5300.14248.256.5661.7410.15647.576.7660.1760.16346.677.0258.9960.17544.697.6557.5560.21043.977.8954.2590.24343.837.9452.2370.24353.345.3084.7590.091	RainT.C.US/ILY1.AreaYBase(mm/hr)(mins)(m)(ha)Flow (1/s)51.845.6471.1850.0910.049.236.2967.5300.1420.048.256.5661.7410.1560.047.576.7660.1760.1630.046.677.0258.9960.1750.044.697.6557.5560.2100.043.977.8954.2590.2430.053.345.3084.7590.0910.0	Rain T.C. 0S/IL 2 1. Area 2 Base Foul (mm/hr) (mins) (m) (ha) Flow (l/s) (l/s) 51.84 5.64 71.185 0.091 0.0 0.0 49.23 6.29 67.530 0.142 0.0 0.0 48.25 6.56 61.741 0.156 0.0 0.0 47.57 6.76 60.176 0.163 0.0 0.0 46.67 7.02 58.996 0.175 0.0 0.0 44.69 7.65 57.556 0.210 0.0 0.0 43.97 7.89 54.259 0.243 0.0 0.0 43.83 7.94 52.237 0.243 0.0 0.0 53.34 5.30 84.759 0.091 0.0 0.0	RainT.C.US/ILFI.AreaF BaseFoulAdd Flow(mm/hr)(mins)(m)(ha)Flow(l/s)(l/s)(l/s)51.845.6471.1850.0910.00.03.449.236.2967.5300.1420.00.05.048.256.5661.7410.1560.00.05.447.576.7660.1760.1630.00.05.646.677.0258.9960.1750.00.05.944.697.6557.5560.2100.00.06.843.977.8954.2590.2430.00.07.743.837.9452.2370.2430.00.03.5	RainF.C.0S/IL2 1.Area2 BaseFoulAdd FlowVel(mm/hr)(mins)(m)(ha)Flow (1/s)(1/s)(1/s)(1/s)(m/s)51.845.6471.1850.0910.00.03.41.8949.236.2967.5300.1420.00.05.02.1848.256.5661.7410.1560.00.05.41.9147.576.7660.1760.1630.00.05.61.9346.677.0258.9960.1750.00.05.91.8644.697.6557.5560.2100.00.06.81.8443.977.8954.2590.2430.00.07.72.1443.837.9452.2370.2430.00.03.51.7353.345.3084.7590.0910.00.03.51.73	RainT.C.0S/IL2 I.Area2 BaseFoulAdd FlowVelCap(mm/hr)(mins)(m)(ha)Flow (l/s)(l/s)(l/s)(m/s)(l/s)51.845.6471.1850.0910.00.03.41.891891.249.236.2967.5300.1420.00.05.02.182184.548.256.5661.7410.1560.00.05.41.911905.747.576.7660.1760.1630.00.05.61.931925.746.677.0258.9960.1750.00.05.91.861862.944.697.6557.5560.2100.00.06.81.841837.943.977.8954.2590.2430.00.07.72.142137.143.837.9452.2370.2430.00.03.51.731726.3

COWI UK Limited		Page 3
Kelvin House		
RTC Business Park, London Rd		Contraction of the second
Derby DE24 8UP		Mirco
Date 11/04/2023 17:14	Designed by AHSI	Desinado
File Hole Farm West of farm Lane Rev 5.MDX	Checked by	Diamaye
Innovyze	Network 2020.1.3	1

Network Design Table for Storm

PN	Length	Fall	Slope	I.Area	T.E.	Base	k	n	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow (l/s)	(mm)		SECT	(mm)		Design
S5.001	45.556	0.460	99.0	0.085	0.00	0.0		0.050	3 \=/	500	1:3 Swale	<u>~</u>
S5.002	82.350	1.539	53.5	0.171	0.00	0.0		0.050	3 \=/	500	1:3 Swale	, second
s5.003	42.447	1.691	25.1	0.173	0.00	0.0		0.050	3 \=/	500	1:3 Swale	ě
S5.004	65.230	7.932	8.2	0.241	0.00	0.0		0.050	3 \=/	500	1:3 Swale	ř
S5.005	74.699	7.670	9.7	0.126	0.00	0.0		0.050	3 \=/	500	1:3 Swale	- Č
S5.006	54.998	3.667	15.0	0.044	0.00	0.0		0.050	3 \=/	500	1:3 Swale	ř
S5.007	49.697	2.109	23.6	0.020	0.00	0.0		0.050	3 \=/	500	1:3 Swale	ř
S5.008	32.785	0.066	500.0	0.025	0.00	0.0		0.050	3 \=/	500	1:3 Swale	Ă
S5.009	21.824	0.044	500.0	0.026	0.00	0.0		0.050	3 \=/	500	1:3 Swale	ă
S5.010	32.052	0.064	500.0	0.049	0.00	0.0		0.050	3 \=/	500	1:3 Swale	ă

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow	
	(mm/hr)	(mins)	(m)	(ha)	Flow (l/s)	(l/s)	(l/s)	(m/s)	(l/s)	(l/s)	
S5 001	19 61	6 1 9	83 168	0 176	0.0	0 0	63	0 85	815 9	37 9	
s5.001	45.49	7.39	83.008	0.347	0.0	0.0	11.4	1.15	1150.7	68.4	
S5.003	44.21	7.81	81.469	0.520	0.0	0.0	16.6	1.68	1680.1	99.5	
S5.004	43.15	8.18	79.778	0.761	0.0	0.0	23.7	2.94	2935.4	142.3	
S5.005	41.91	8.64	71.846	0.887	0.0	0.0	26.8	2.70	2697.3	161.1	
S5.006	40.88	9.06	64.176	0.931	0.0	0.0	27.5	2.17	2173.4	164.9	
S5.007	39.81	9.54	60.509	0.951	0.0	0.0	27.5	1.73	1734.1	164.9	
S5.008	36.93	10.99	58.400	0.976	0.0	0.0	27.5	0.38	376.5	164.9	
S5.009	35.26	11.96	58.334	1.002	0.0	0.0	27.5	0.38	376.5	164.9	
S5.010	33.11	13.38	58.290	1.051	0.0	0.0	27.5	0.38	376.5	164.9	
				©1982-2	2020 Inno	vyze					

COWI UK Limited		Page 4
Kelvin House		
RTC Business Park, London Rd		Contraction of the second
Derby DE24 8UP		Mirco
Date 11/04/2023 17:14	Designed by AHSI	Desinado
File Hole Farm West of farm Lane Rev 5.MDX	Checked by	Diamage
Innovyze	Network 2020.1.3	

PN	Length	Fall	Slope	I.Area	T.E.	Base	k	n	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow (l/s	(mm)		SECT	(mm)		Design
S5.011	44.899	0.090	500.0	0.131	0.00	0.0)	0.050	3 \=/	500	1:3 Swale	e en
S5.012	6.118	0.012	500.0	0.010	0.00	0.0)	0.050	3 \=/	500	1:3 Swale	·
S5.013	46.756	0.094	500.0	0.073	0.00	0.0)	0.050	3 \=/	500	1:3 Swale	· 🐻
S5.014	53.464	2.569	20.8	0.017	0.00	0.0)	0.050	3 \=/	500	1:3 Swale	· 🍈
S5.015	46.050	3.011	15.3	0.017	0.00	0.0)	0.050	3 \=/	500	1:3 Swale	- Ā
S5.016	12.641	0.726	17.4	0.006	0.00	0.0)	0.050	0	500	Pipe/Conduit	· 🎽
S5.017	17.274	0.035	500.0	0.011	0.00	0.0)	0.050	3 \=/	500	1:3 Swale	ě
S4.008	13.823	0.161	85.9	0.000	0.00	0.0	0.600		0	500	Pipe/Conduit	•
S4.009	36.719	1.819	20.2	0.000	0.00	0.0)	0.050	3 \=/	500	1:3 Swale	

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow (l/s)	(l/s)	(1/s)	(m/s)	(1/s)	(1/s)
S5 011	30 56	15 36	58 226	1 182	0 0	0 0	27 5	0 38	376 5	164 9
s5.011	30.25	15.63	58.136	1.193	0.0	0.0	27.5	0.38	376.5	164.9
S5.013	28.08	17.70	58.124	1.265	0.0	0.0	27.5	0.38	376.5	164.9
S5.014	27.63	18.19	58.030	1.283	0.0	0.0	27.5	1.85	1845.2	164.9
S5.015	27.31	18.54	55.461	1.300	0.0	0.0	27.5	2.15	2152.5	164.9
S5.016	27.15	18.72	52.450	1.306	0.0	0.0	27.5	1.20	235.3	164.9
S5.017	26.49	19.48	51.724	1.316	0.0	0.0	27.5	0.38	376.5	164.9
S4.008	26.41	19.58	51.689	1.559	0.0	0.0	29.7	2.35	460.6	178.5
S4.009	26.14	19.91	51.528	1.559	0.0	0.0	29.7	1.87	1873.5	178.5
				©1982-2	2020 Innov	yze				

COWI UK Limited		Page 5
Kelvin House		
RTC Business Park, London Rd		Concerned and
Derby DE24 8UP		Mirco
Date 11/04/2023 17:14	Designed by AHSI	Desinado
File Hole Farm West of farm Lane Rev 5.MDX	Checked by	Diamage
Innovyze	Network 2020.1.3	

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Base Flow (l/s)	k (mm)	n	HYD SECT	DIA (mm)	Section Type	Auto Design
S4.010	80.974	0.162	500.0	0.006	0.00	0.0		0.050	3 \=/	500	1:3 Swale	•
S6.000	65.983	2.552	25.9	0.036	5.00	0.0		0.050	3 \=/	500	1:3 Swale	<u>A</u>
S6.001	66.007	4.815	13.7	0.071	0.00	0.0		0.050	3 \=/	500	1:3 Swale	ě
S6.002	50.131	2.672	18.8	0.112	0.00	0.0		0.050	3 \=/	500	1:3 Swale	- And
S6.003	20.099	1.099	18.3	0.060	0.00	0.0		0.050	3 \=/	500	1:3 Swale	ě
S6.004	36.710	1.841	19.9	0.139	0.00	0.0		0.050	3 \=/	500	1:3 Swale	ř
S6.005	64.673	3.118	20.7	0.201	0.00	0.0		0.050	3 \=/	500	1:3 Swale	- The second sec
S6.006	48.307	2.176	22.2	0.308	0.00	0.0		0.050	3 \=/	500	1:3 Swale	- The second sec
S6.007	31.335	0.831	37.7	0.086	0.00	0.0		0.050	3 \=/	500	1:3 Swale	ď

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow	
	(mm/hr)	(mins)	(m)	(ha)	Flow (l/s)	(l/s)	(1/s)	(m/s)	(1/s)	(1/s)	
S4.010	23.57	23.49	49.709	1.566	0.0	0.0	29.7	0.38	376.5	178.5	
S6.000	51.73	5.66	70.227	0.036	0.0	0.0	1.4	1.66	1655.5	8.1	
S6.001	49.79	6.15	67.675	0.108	0.0	0.0	3.9	2.27	2273.5	23.2	
S6.002	48.19	6.58	62.860	0.219	0.0	0.0	7.6	1.94	1943.4	45.8	
S6.003	47.59	6.75	60.188	0.279	0.0	0.0	9.6	1.97	1968.4	57.5	
S6.004	46.50	7.07	59.089	0.418	0.0	0.0	14.0	1.89	1885.1	84.2	
S6.005	44.66	7.66	57.248	0.619	0.0	0.0	20.0	1.85	1848.3	119.7	
S6.006	43.35	8.11	54.130	0.927	0.0	0.0	29.0	1.79	1786.6	174.1	
S6.007	42.31	8.49	51.954	1.013	0.0	0.0	30.9	1.37	1370.8	185.7	
				©1982-2	2020 Innov	yze					

COWI UK Limited		Page 6
Kelvin House		
RTC Business Park, London Rd		The second second
Derby DE24 8UP		Mirco
Date 11/04/2023 17:14	Designed by AHSI	Dcainago
File Hole Farm West of farm Lane Rev 5.MDX	Checked by	Diamaye
Innovyze	Network 2020.1.3	

PN	Length	Fall	Slope	I.Area	T.E.	Ba	se	k	n	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(l/s)	(mm)		SECT	(mm)		Design
S6.008	82.152	0.750	109.5	0.219	0.00		0.0		0.050	3 \=/	500	1:3 Swale	æ
S6.009	2.647	0.024	110.3	0.000	0.00		0.0		0.050	3 \=/	500	1:3 Swale	ř
S6.010	10.746	0.802	13.4	0.000	0.00		0.0	0.600		0	500	Pipe/Conduit	
S4.011	10.845	0.022	492.9	0.004	0.00		0.0		0.050	3 \=/	500	1:3 Swale	•
S4.012	24.110	0.909	26.5	0.104	0.00		0.0	0.600		0	500	Pipe/Conduit	÷.
S4.013	38.746	1.120	34.6	0.170	0.00		0.0		0.050	3 \=/	500	1:3 Swale	<u> </u>
S4.014	28.399	1.057	26.9	0.130	0.00		0.0		0.050	3 \=/	500	1:3 Swale	- The second sec
S4.015	62.836	1.883	33.4	0.258	0.00		0.0		0.050	3 \=/	500	1:3 Swale	- The second sec
S4.016	38.532	1.619	23.8	0.126	0.00		0.0		0.050	3 \=/	500	1:3 Swale	é

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow (l/s)	(l/s)	(1/s)	(m/s)	(1/s)	(1/s)
56.008	38.46	10.19	51,123	1.232	0.0	0.0	34.2	0.80	804.3	205.2
S6.009	38.35	10.25	50.373	1.232	0.0	0.0	34.2	0.80	801.6	205.2
S6.010	38.29	10.28	50.349	1.232	0.0	0.0	34.2	5.96	1169.8	205.2
S4.011	23.27	23.97	49.547	2.802	0.0	0.0	47.1	0.38	379.1	282.5
S4.012	23.22	24.07	49.525	2.905	0.0	0.0	48.7	4.23	830.7	292.3
S4.013	22.95	24.52	48.616	3.076	0.0	0.0	51.0	1.43	1431.2	305.9
S4.014	22.78	24.81	47.496	3.206	0.0	0.0	52.7	1.62	1624.0	316.5
S4.015	22.38	25.53	46.439	3.464	0.0	0.0	56.0	1.46	1457.2	335.9
S4.016	22.18	25.90	44.556	3.590	0.0	0.0	57.5	1.73	1725.5	345.1
				©1982-2	2020 Innov	yze				

COWI UK Limited		Page 7
Kelvin House		
RTC Business Park, London Rd		The second second
Derby DE24 8UP		Mirco
Date 11/04/2023 17:14	Designed by AHSI	Desinado
File Hole Farm West of farm Lane Rev 5.MDX	Checked by	Diamage
Innovyze	Network 2020.1.3	

				Net	work D	<u>esign Tabi</u>	le for	<u>Stor</u>	<u>m</u>			
PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Base Flow (l/s)	k (mm)	n	HYD SECT	DIA (mm)	Section Type	Auto Design
S7.000 S7.001	14.074 26.076	0.207 0.052	68.0 500.0	0.042 0.000	5.00 0.00	0.0	0.600 0.600		0	500 375	Pipe/Conduit Pipe/Conduit	⊕
S4.017	37.620	2.272	16.6	0.154	0.00	0.0		0.050	3 \=/	500	1:3 Swale	•
S8.000 S8.001 S8.002	28.988 29.331 35.653	1.162 0.808 2.097	24.9 36.3 17.0	0.083 0.018 0.096	5.00 0.00 0.00	0.0 0.0 0.0		0.050 0.050 0.050	3 \=/ 3 \=/ 3 \=/	500 500 500	1:3 Swale 1:3 Swale 1:3 Swale	୍ଟ ଟ କ

<u>Network Results Table</u>

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow	
	(mm/hr)	(mins)	(m)	(ha)	Flow (l/s)	(l/s)	(l/s)	(m/s)	(l/s)	(l/s)	
07 000	F 4 00	F 0.0	10 100	0 0 4 0	0.0	0 0	1 (0 64	F17 0	0 0	
S7.000	54.29	5.09	43.196	0.042	0.0	0.0	1.6	2.64	51/.8	9.9	
S7.001	51.88	5.63	42.989	0.042	0.0	0.0	1.6	0.80	88.7	9.9	
S4 017	22 02	26 20	42 937	3 786	0 0	0 0	60 2	2 07	2068 7	361 2	
01.017	22.02	20.20	12.007	3.700	0.0	0.0	00.2	2.07	2000.7	001.2	
CS 000	53 30	5 20	16 170	0 083	0 0	0 0	3 0	1 60	1695 3	10 1	
30.000	55.50	5.29	40.470	0.005	0.0	0.0	5.2	1.09	1000.0	19.1	
S8.001	51.85	5.64	45.308	0.101	0.0	0.0	3.8	1.40	1397.1	22.7	
S8.002	50.65	5.93	44,500	0.197	0.0	0.0	7.2	2.04	2041.5	43.2	

COWI UK Limited		Page 8
Kelvin House		
RTC Business Park, London Rd		The second
Derby DE24 8UP		Mirco
Date 11/04/2023 17:14	Designed by AHSI	Dcainago
File Hole Farm West of farm Lane Rev 5.MDX	Checked by	Diamage
Innovyze	Network 2020.1.3	1

PN	Length	Fall	Slope	I.Area	T.E.	Bas	se	k	n	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow ((l/s)	(mm)		SECT	(mm)		Design
S9.000	43.741	0.710	61.6	0.193	5.00		0.0	1.500		0	300	Pipe/Conduit	a
S9.001	35.954	0.072	500.0	0.000	0.00		0.0	0.600		0	300	Pipe/Conduit	Ť
S8.003	2.416	0.005	500.0	0.013	0.00		0.0		0.050	3 \=/	500	1:3 Swale	•
S8.004	19.514	0.039	500.0	0.020	0.00		0.0		0.050	3 \=/	500	1:3 Swale	
S8.005	44.941	1.694	26.5	0.167	0.00		0.0		0.050	3 \=/	500	1:3 Swale	
S4.018	22.356	0.582	38.4	0.118	0.00		0.0	0.600		0	500	Pipe/Conduit.	۵
S4.019	34.670	0.263	131.8	0.023	0.00		0.0	0.600		0	500	Pipe/Conduit	Ä
S4.020	5.790	0.290	20.0	0.000	0.00		0.0	0.600		0	500	Pipe/Conduit	ě

<u>Network Results Table</u>

PN	Rain	т.с.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow	
	(mm/hr)	(mins)	(m)	(ha)	Flow (1/s)	(1/s)	(1/s)	(m/s)	(1/s)	(1/s)	
S9.000	52.82	5.41	43.185	0.193	0.0	0.0	7.4	1.77	125.0	44.2	
S9.001	49.31	6.27	42.475	0.193	0.0	0.0	7.4	0.70	49.2	44.2	
S8.003	48.91	6.38	42.403	0.403	0.0	0.0	14.2	0.38	376.5	85.4	
S8.004	45.94	7.24	42.398	0.423	0.0	0.0	14.2	0.38	376.5	85.4	
S8.005	44.52	7.70	42.359	0.590	0.0	0.0	19.0	1.63	1634.3	113.9	
S4.018	21.96	26.31	40.665	4.494	0.0	0.0	71.3	3.51	689.8	427.7	
S4.019	21.80	26.61	40.083	4.516	0.0	0.0	71.3	1.89	371.2«	427.7	
S4.020	21.79	26.63	39.820	4.516	0.0	0.0	71.3	4.87	957.0	427.7	

COWI UK Limited		Page 9
Kelvin House		
RTC Business Park, London Rd		The second second
Derby DE24 8UP		Mirco
Date 11/04/2023 17:14	Designed by AHSI	Desinado
File Hole Farm West of farm Lane Rev 5.MDX	Checked by	Diamage
Innovyze	Network 2020.1.3	

PN	Length	Fall	Slope	I.Area	T.E.	Base	k	n HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow (l/s)	(mm)	SECT	(mm)		Design
S4.021	50.110	1.120	44.7	0.192	0.00	0.0	0.600	C	500	Pipe/Conduit	A
S4.022	6.947	0.058	119.2	0.000	0.00	0.0	0.600	0	500	Pipe/Conduit	Ă
S4.023	67.285	0.880	76.5	0.308	0.00	0.0	0.600	c	500	Pipe/Conduit	ă
S4.024	4.229	0.042	100.0	0.000	0.00	0.0	0.600	c	500	Pipe/Conduit	- Ā
S4.025	39.442	0.951	41.5	0.276	0.00	0.0	0.600	c	500	Pipe/Conduit	Ā
S4.026	9.992	0.012	857.2	0.000	0.00	0.0	0.600	c	500	Pipe/Conduit	Ä
S4.027	68.265	0.967	70.6	0.000	0.00	0.0		0.050 3 \=,	500	1:3 Swale	Ä
S4.028	5.000	0.010	500.0	0.000	0.00	0.0		0.050 3 \=,	500	1:3 Swale	ě

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow (l/s)	(l/s)	(l/s)	(m/s)	(1/s)	(l/s)
S4.021	21.66	26.89	39.530	4.708	0.0	0.0	73.7	3.25	639.0	442.0
S4.022	21.63	26.95	38.410	4.708	0.0	0.0	73.7	1.99	390.5«	442.0
S4.023	21.41	27.40	38.352	5.016	0.0	0.0	77.6	2.49	488.2	465.3
S4.024	21.39	27.43	37.472	5.016	0.0	0.0	77.6	2.17	426.6«	465.3
S4.025	21.30	27.63	37.430	5.292	0.0	0.0	81.4	3.38	663.8	488.4
S4.026	21.19	27.85	36.479	5.292	0.0	0.0	81.4	0.73	144.1«	488.4
S4.027	20.66	28.99	36.467	5.292	0.0	0.0	81.4	1.00	1001.9	488.4
S4.028	20.56	29.21	35.500	5.292	0.0	0.0	81.4	0.38	376.5«	488.4

COWI UK Limited		Page 10
Kelvin House		
RTC Business Park, London Rd		Concernance of the second
Derby DE24 8UP		Mirco
Date 11/04/2023 17:14	Designed by AHSI	Dcainago
File Hole Farm West of farm Lane Rev 5.MDX	Checked by	Diamaye
Innovyze	Network 2020.1.3	

Manhole Schedules for Storm

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
S1	71.685	0.500	Junction		S4.000	71.185	500				
s2	68.030	0.500	Junction		S4.001	67.530	500	S4.000	67.530	500	
S3	62.241	0.500	Junction		S4.002	61.741	500	S4.001	61.741	500	
S4	60.676	0.500	Junction		S4.003	60.176	500	S4.002	60.176	500	
S5	59.496	0.500	Junction		S4.004	58.996	500	S4.003	58.996	500	
S6	58.056	0.500	Junction		S4.005	57.556	500	S4.004	57.556	500	
s7	54.759	0.500	Junction		S4.006	54.259	500	S4.005	54.259	500	
S8	53.337	1.100	Junction		S4.007	52.237	500	S4.006	52.237	500	
S9	85.259	0.500	Junction		S5.000	84.759	500				
S10	83.968	0.500	Junction		S5.001	83.468	500	S5.000	83.468	500	
S11	83.508	0.500	Junction		S5.002	83.008	500	S5.001	83.008	500	
S12	81.969	0.500	Junction		S5.003	81.469	500	S5.002	81.469	500	
S13	80.278	0.500	Junction		S5.004	79.778	500	S5.003	79.778	500	
S14	72.346	0.500	Junction		S5.005	71.846	500	S5.004	71.846	500	
S15	64.676	0.500	Junction		S5.006	64.176	500	S5.005	64.176	500	
S16	61.433	0.923	Junction		S5.007	60.509	500	S5.006	60.509	500	
S17	58.910	0.510	Junction		S5.008	58.400	500	S5.007	58.400	500	
S18	60.624	2.290	Junction		S5.009	58.334	500	S5.008	58.334	500	
S19	62.052	3.762	Junction		S5.010	58.290	500	S5.009	58.290	500	

COWI UK Limited		Page 11
Kelvin House		
RTC Business Park, London Rd		No. of the local sectors of th
Derby DE24 8UP		Mirco
Date 11/04/2023 17:14	Designed by AHSI	Dcainago
File Hole Farm West of farm Lane Rev 5.MDX	Checked by	Diamaye
Innovyze	Network 2020.1.3	

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
s20	63.542	5.316	Junction		s5.011	58.226	500	s5.010	58.226	500	
S21	63.064	4.928	Junction		S5.012	58.136	500	S5.011	58.136	500	
S22	62.863	4.739	Junction		S5.013	58.124	500	S5.012	58.124	500	
S23	59.987	1.957	Junction		S5.014	58.030	500	S5.013	58.030	500	
S24	56.635	1.174	Junction		S5.015	55.461	500	S5.014	55.461	500	
S25	54.124	1.674	Junction		S5.016	52.450	500	S5.015	52.450	500	
S26	53.398	1.674	Junction		S5.017	51.724	500	S5.016	51.724	500	
S27	53.100	1.411	Junction		S4.008	51.689	500	S4.007	51.689	500	
								S5.017	51.689	500	
S28	52.450	0.922	Junction		S4.009	51.528	500	S4.008	51.528	500	
S29	51.463	1.754	Junction		S4.010	49.709	500	S4.009	49.709	500	
S30	70.727	0.500	Junction		S6.000	70.227	500				
S31	68.175	0.500	Junction		S6.001	67.675	500	S6.000	67.675	500	
S32	63.360	0.500	Junction		S6.002	62.860	500	S6.001	62.860	500	
S33	60.688	0.500	Junction		s6.003	60.188	500	S6.002	60.188	500	
S34	59.589	0.500	Junction		S6.004	59.089	500	S6.003	59.089	500	
S35	57.748	0.500	Junction		s6.005	57.248	500	S6.004	57.248	500	
S36	54.630	0.500	Junction		S6.006	54.130	500	S6.005	54.130	500	
S37	52.454	0.500	Junction		s6.007	51.954	500	S6.006	51.954	500	

COWI UK Limited		Page 12
Kelvin House		
RTC Business Park, London Rd		Constanting of the
Derby DE24 8UP		Mirco
Date 11/04/2023 17:14	Designed by AHSI	Dcainago
File Hole Farm West of farm Lane Rev 5.MDX	Checked by	Diamaye
Innovyze	Network 2020.1.3	

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
S38	51.623	0.500	Junction		s6.008	51.123	500	S6.007	51.123	500	
S39	51.023	0.650	Junction		S6.009	50.373	500	S6.008	50.373	500	
S40	50.999	0.650	Junction		S6.010	50.349	500	S6.009	50.349	500	
S41	50.677	1.130	Junction		S4.011	49.547	500	S4.010	49.547	500	
								S6.010	49.547	500	
S42	50.340	0.815	Junction		S4.012	49.525	500	S4.011	49.525	500	
S43	49.116	0.500	Junction		S4.013	48.616	500	S4.012	48.616	500	
S44	47.996	0.500	Junction		S4.014	47.496	500	S4.013	47.496	500	
S45	46.939	0.500	Junction		S4.015	46.439	500	S4.014	46.439	500	
S46	45.056	0.500	Junction		S4.016	44.556	500	S4.015	44.556	500	
S47	44.896	1.700	Junction		s7.000	43.196	500				
S48	44.489	1.500	Junction		s7.001	42.989	375	s7.000	42.989	500	
S49	44.235	1.298	Junction		S4.017	42.937	500	S4.016	42.937	500	
								s7.001	42.937	375	
S50	46.970	0.500	Junction		s8.000	46.470	500				
S51	45.808	0.500	Junction		s8.001	45.308	500	S8.000	45.308	500	
S52	45.000	0.500	Junction		s8.002	44.500	500	S8.001	44.500	500	
S53	44.685	1.500	Open Manhole	1500	\$9.000	43.185	300				
S54	43.975	1.500	Open Manhole	1500	s9.001	42.475	300	s9.000	42.475	300	

COWI UK Limited		Page 13
Kelvin House		
RTC Business Park, London Rd		Concernance of the second
Derby DE24 8UP		Mirco
Date 11/04/2023 17:14	Designed by AHSI	Dcainago
File Hole Farm West of farm Lane Rev 5.MDX	Checked by	Diamaye
Innovyze	Network 2020.1.3	

				<u>Manho</u>	le Sch	edules fo	or Storm				
MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
S55	43.770	1.367	Junction		s8.003	42.403	500	S8.002	42.403	500	
								S9.001	42.403	300	
S56	43.726	1.328	Junction		S8.004	42.398	500	S8.003	42.398	500	
S57	43.537	1.178	Junction		S8.005	42.359	500	S8.004	42.359	500	
S58	43.137	2.472	Junction		S4.018	40.665	500	S4.017	40.665	500	
								S8.005	40.665	500	
S59	42.470	2.387	Junction		S4.019	40.083	500	S4.018	40.083	500	
S60	41.320	1.500	Junction		S4.020	39.820	500	S4.019	39.820	500	
S61	41.130	1.600	Junction		S4.021	39.530	500	S4.020	39.530	500	
S62	39.910	1.500	Junction		S4.022	38.410	500	S4.021	38.410	500	
S63	39.800	1.448	Junction		S4.023	38.352	500	S4.022	38.352	500	
S64	38.972	1.500	Junction		S4.024	37.472	500	S4.023	37.472	500	
S65	38.858	1.428	Junction		S4.025	37.430	500	S4.024	37.430	500	
S66	37.979	1.500	Junction		S4.026	36.479	500	S4.025	36.479	500	
S67	37.847	1.380	Junction		S4.027	36.467	500	S4.026	36.467	500	
S68	36.000	0.500	Junction		S4.028	35.500	500	S4.027	35.500	500	
S	36.000	0.510	Open Manhole	0		OUTFALL		S4.028	35.490	500	

COWI UK Limited							Page 14
Kelvin House							
RTC Business Park, London Rd							
Derby DE24 8UP							Micco
Date 11/04/2023 17:14			Designed by A	AHSI			Dcainago
File Hole Farm West of farm Lane 1	Rev 5.MDX		Checked by				Diamaye
Innovyze		1	Network 2020.	.1.3			
		<u>Manho</u>	le Schedules	for Storm			
мн	Manhole	Manhole	Intersection	Intersection	Manhole	Lavout	
Name	Easting (m)	Northing (m)	g Easting (m)	Northing (m)	Access	(North)	
S1	557809.747	189694.64	14		No Entry	<u></u>	
S2	557871.287	189732.80	7		No Entry	0	
S3	557956.701	189742.44	16		No Entry		
S4	557987.208	189741.11	.3		No Entry		
S5	558008.158	189732.78	32		No Entry	@	
S6	558033.774	189718.35	53		No Entry	·•-	
S7	558101.230	189703.09	96		No Entry	•• •	
S8	558131.987	189696.93	34		No Entry		
		©.	1982-2020 Inr	novyze			

COWI UK Limited		Page 15
Kelvin House		
RTC Business Park, London Rd		Constanting of the second
Derby DE24 8UP		Mirco
Date 11/04/2023 17:14	Designed by AHSI	Dcainago
File Hole Farm West of farm Lane Rev 5.MDX	Checked by	Diamaye
Innovyze	Network 2020.1.3	

Manhole Schedules for Storm

COWI UK Limited		Page 16
Kelvin House		
RTC Business Park, London Rd		Sec. and
Derby DE24 8UP		Mirco
Date 11/04/2023 17:14	Designed by AHSI	Dcainago
File Hole Farm West of farm Lane Rev 5.MDX	Checked by	Diamage
Innovyze	Network 2020.1.3	
<u>Ma</u>	nhole Schedules for Storm	
MH Manhole Manh	nole Intersection Intersection Manhole Layout	
Name Easting Nort (m) (r	hing Easting Northing Access (North) n) (m) (m)	

©1982-2020 Innovyze

No Entry

S17 558140.450 189926.533

S18 558117.208 189903.410

S19 558097.649 189893.729

S20 558068.698 189879.975

S21 558045.833 189841.334

S22 558045.413 189835.231

S23 558067.676 189794.116

S24 558108.363 189759.432

COWI UK Limited		Page 17
Kelvin House		
RTC Business Park, London Rd		
Derby DE24 8UP		Micco
Date 11/04/2023 17:14	Designed by AHSI	Desinado
File Hole Farm West of farm Lane Rev 5.MDX	Checked by	Diamaye
Innovyze	Network 2020.1.3	

Manhole Schedules for Storm

COWI UK Limited							Page 18		
Kelvin House									
RTC Business Park, London Rd							Sec. 1		
Derby DE24 8UP							Mirco		
Date 11/04/2023 17:14			Designed by A	AHSI			Drainago		
File Hole Farm West of farm Lane H	Rev 5.MDX		Checked by				Diamage		
Innovyze			Network 2020.	.1.3					
Manhole Schedules for Storm									
MI	Manhala	Manhala	Tatoncostion	Tatoacotion	Manhala	Tourout			
Name	Easting (m)	Northing (m)	g Easting (m)	Northing (m)	Access	(North)			
S33	557985.627	189733.74	12		No Entry				
\$34	558004.300	189726.30)4		No Entry				
\$35	558036.314	189708.34	10		No Entry				
\$36	558099.740	189695.69	99		No Entry				
S37	558147.124	189686.30	01		No Entry				
S38	558165.159	189660.67	76		No Entry				
S39	558175.956	189579.23	37		No Entry				
S40	558176.351	189576.62	20		No Entry				
			1982-2020 Inr	novvze					

COWI UK Limited							Page 19
Kelvin House							
RTC Business Park, London Rd							Constant of the second
Derby DE24 8UP							Mirco
Date 11/04/2023 17:14		D	Designed by A	AHSI			Dcainago
File Hole Farm West of farm Lane Re	ev 5.MDX	C	Checked by				Diamaye
Innovyze		N	Network 2020.	1.3			
		<u>Manhol</u>	e Schedules	<u>for Storm</u>			
MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)	
S41 55	58184.722	189583.357	7		No Entry	A	
S42 55	58195.564	189583.583	3		No Entry		
S43 55	58219.211	189588.286	6		No Entry		
S44 55	58256.471	189598.915	5		No Entry		
S45 55	58283.499	189607.630	0		No Entry		
S46 55	58342.511	189629.218	3		No Entry		
S47 55	58362.534	189677.128	3		No Entry	Q	
S48 55	58374.392	189669.547	7		No Entry	· •	

COWI UK Limited							Page 20
Kelvin House							
RTC Business Park, London Rd							Contraction of the second
Derby DE24 8UP							Mirco
Date 11/04/2023 17:14		E	Designed by A	HSI			Dcainago
File Hole Farm West of farm Lane H	Rev 5.MDX	C	Checked by				Diamaye
Innovyze		N	Network 2020.	1.3			1
		Manhal	o Caboduloa	for Ctorm			
		Mannoi	e schedules	<u>IOI SLOIM</u>			
МН	Manhole	Manhole	Intersection	Intersection	Manhole	Layout	
Name	Easting (m)	Northing (m)	Easting (m)	Northing (m)	Access	(North)	
S49	558378.198	189643.750	0		No Entry		
\$50	558445.427	189771.555	5		No Entry		
S51	558462.907	189748.429	9		No Entry	$\sum_{i=1}^{n}$	
S52	558446.409	189726.148	3		No Entry	d a la l	
s53	558537.885	189731.714	4 558537.885	189731.714	Required		
S54	558501.746	189707.071	1 558501.746	189707.071	Required	-0-	
s55	558467.182	189697.172	2		No Entry	-4	
\$56	558466.024	189695.051	1		No Entry		
						F	

COWI UK Limited							Page 21
Kelvin House							
RTC Business Park, London Rd							Constanting of the
Derby DE24 8UP							Mirro
Date 11/04/2023 17:14			Designed by A	AHSI			Dcainago
File Hole Farm West of farm Lane	Rev 5.MDX		Checked by				Digitige
Innovyze			Network 2020.	.1.3			
		<u>Manho</u>	le Schedules	for Storm			
MU	Manhole	Manhole	Intersection	Intersection	Manhole	Lavout	
Name	Easting	Northing	Easting	Northing	Access	(North)	
	(m)	(m)	(m)	(m)			
s57	558449.338	189684.93	34		No Entry		
					-	1 and 1	
050		100650 10	2		N. Data		
538	558412.507	189629.18	2		NO Entry	and the second s	
s59	558430.864	189646.42	.3		No Entry		
s60	558458.701	189625.75	6		No Entry		
561	558462 636	189621 50	18		No Entry	\cdot	
	550402.050	109021.90			NO DHELY	` 0	
S62	558488.952	189578.86	54		No Entry		
						<u> </u>	
\$63	558488.979	189571.91	.7		No Entry		
						\bigcirc	
564	558491.579	189504.68	32		No Entrv		
	000101.075	100001.00	-				
						1	
		0.	1982-2020 Trr	0.11170			
		0.	1902-2020 III	lovyze			

COWI UK Limited		Page 22
Kelvin House		
RTC Business Park, London Rd		Constanting of the second
Derby DE24 8UP		Mirco
Date 11/04/2023 17:14	Designed by AHSI	Desinado
File Hole Farm West of farm Lane Rev 5.MDX	Checked by	Diamaye
Innovyze	Network 2020.1.3	

Manhole Schedules for Storm

MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)
S65	558492.632	189500.586			No Entry	Φ
S66	558495.736	189461.267			No Entry	0
S67	558498.196	189451.583			No Entry	Φ
S68	558511.272	189384.582			No Entry	0
S	558511.812	189379.611			No Entry	

COWI UK Limited		Page 23
Kelvin House		
RTC Business Park, London Rd		Contraction of the second
Derby DE24 8UP		Mirco
Date 11/04/2023 17:14	Designed by AHSI	Dcainago
File Hole Farm West of farm Lane Rev 5.MDX	Checked by	Diamage
Innovyze	Network 2020.1.3	

Area Summary for Storm

Pipe	PIMP	PIMP	PIMP	Gross	Imp.	Pipe Total	
Number	Туре	Name	(%)	Area (ha)	Area (ha)	(ha)	
4.000	Classification	Unpaved	20	0.454	0.091	0.091	
4.001	Classification	Unpaved	20	0.255	0.051	0.051	
4.002	Classification	Unpaved	20	0.071	0.014	0.014	
4.003	Classification	Unpaved	20	0.034	0.007	0.007	
4.004	Classification	Unpaved	20	0.063	0.013	0.013	
4.005	Classification	Unpaved	20	0.172	0.034	0.034	
4.006	Classification	Unpaved	20	0.088	0.018	0.018	
	Classification	Paved	100	0.016	0.016	0.033	
4.007	-	-	100	0.000	0.000	0.000	
5.000	Classification	Unpaved	20	0.392	0.078	0.078	
	Classification	Paved	100	0.013	0.013	0.091	
5.001	Classification	Unpaved	20	0.357	0.071	0.071	
	Classification	Paved	100	0.014	0.014	0.085	
5.002	Classification	Unpaved	20	0.729	0.146	0.146	
	Classification	Paved	100	0.025	0.025	0.171	
5.003	Classification	Unpaved	20	0.800	0.160	0.160	
	Classification	Paved	100	0.013	0.013	0.173	
5.004	Classification	Unpaved	20	1.107	0.221	0.221	
	Classification	Paved	100	0.020	0.020	0.241	
5.005	Classification	Unpaved	20	0.515	0.103	0.103	
	Classification	Paved	100	0.023	0.023	0.126	
5.006	Classification	Unpaved	20	0.134	0.027	0.027	
	Classification	Paved	100	0.017	0.017	0.044	
5.007	Classification	Unpaved	20	0.029	0.006	0.006	
	Classification	Paved	100	0.015	0.015	0.020	
5.008	Classification	Unpaved	20	0.065	0.013	0.013	
	Classification	Paved	100	0.012	0.012	0.025	
		©1982-2	020	Innovyze			

COWI UK Limited		Page 24
Kelvin House		
RTC Business Park, London Rd		The second
Derby DE24 8UP		Mirco
Date 11/04/2023 17:14	Designed by AHSI	Drainago
File Hole Farm West of farm Lane Rev 5.MDX	Checked by	Diamage
Innovyze	Network 2020.1.3	

Area Summary for Storm

Pipe	PIMP	PIMP	PIMP	Gross	Imp.	Pipe Total
Number	Туре	Name	(%)	Area (ha)	Area (ha)	(ha)
5.009	Classification	Unpaved	20	0.101	0.020	0.020
	Classification	Paved	100	0.006	0.006	0.026
5.010	Classification	Unpaved	20	0.197	0.039	0.039
	Classification	Paved	100	0.010	0.010	0.049
5.011	Classification	Unpaved	20	0.584	0.117	0.117
	Classification	Paved	100	0.014	0.014	0.131
5.012	Classification	Unpaved	20	0.051	0.010	0.010
5.013	Classification	Unpaved	20	0.289	0.058	0.058
	Classification	Paved	100	0.015	0.015	0.073
5.014	Classification	Paved	100	0.017	0.017	0.017
5.015	Classification	Paved	100	0.013	0.013	0.013
	Classification	Unpaved	20	0.019	0.004	0.017
5.016	Classification	Unpaved	20	0.006	0.001	0.001
	Classification	Paved	100	0.005	0.005	0.006
5.017	Classification	Paved	100	0.011	0.011	0.011
4.008	-	-	100	0.000	0.000	0.000
4.009	-	-	100	0.000	0.000	0.000
4.010	Classification	Unpaved	20	0.031	0.006	0.006
6.000	Classification	Unpaved	20	0.067	0.013	0.013
	Classification	Paved	100	0.023	0.023	0.036
6.001	Classification	Unpaved	20	0.257	0.051	0.051
	Classification	Paved	100	0.020	0.020	0.071
6.002	Classification	Unpaved	20	0.482	0.096	0.096
	Classification	Paved	100	0.015	0.015	0.112
6.003	Classification	Unpaved	20	0.268	0.054	0.054
	Classification	Paved	100	0.006	0.006	0.060
6.004	Classification	Unpaved	20	0.639	0.128	0.128
		©1982-2	020	Innovyze		

COWI UK Limited		Page 25
Kelvin House		
RTC Business Park, London Rd		The second
Derby DE24 8UP		Mirco
Date 11/04/2023 17:14	Designed by AHSI	Desinado
File Hole Farm West of farm Lane Rev 5.MDX	Checked by	Diamage
Innovyze	Network 2020.1.3	

Area Summary for Storm

Pipe	PIMP	PIMP	PIMP	Gross	Imp.	Pipe Total		
Number	Туре	Name	(%)	Area (ha)	Area (ha)	(ha)		
	Classification	Paved	100	0.011	0.011	0.139		
6.005	Classification	Unpaved	20	0.905	0.181	0.181		
	Classification	Paved	100	0.020	0.020	0.201		
6.006	Classification	Unpaved	20	1.540	0.308	0.308		
6.007	Classification	Unpaved	20	0.383	0.077	0.077		
	Classification	Paved	100	0.010	0.010	0.086		
6.008	Classification	Unpaved	20	0.953	0.191	0.191		
	Classification	Paved	100	0.028	0.028	0.219		
6.009	-	-	100	0.000	0.000	0.000		
6.010	-	-	100	0.000	0.000	0.000		
4.011	Classification	Paved	100	0.004	0.004	0.004		
4.012	Classification	Unpaved	20	0.483	0.097	0.097		
	Classification	Paved	100	0.007	0.007	0.104		
4.013	Classification	Unpaved	20	0.793	0.159	0.159		
	Classification	Paved	100	0.012	0.012	0.170		
4.014	Classification	Unpaved	20	0.607	0.121	0.121		
	Classification	Paved	100	0.008	0.008	0.130		
4.015	Classification	Unpaved	20	1.197	0.239	0.239		
	Classification	Paved	100	0.019	0.019	0.258		
4.016	Classification	Unpaved	20	0.573	0.115	0.115		
	Classification	Paved	100	0.012	0.012	0.126		
7.000	Classification	Unpaved	20	0.210	0.042	0.042		
7.001	-	-	100	0.000	0.000	0.000		
4.017	Classification	Unpaved	20	0.710	0.142	0.142		
	Classification	Paved	100	0.012	0.012	0.154		
8.000	Classification	Paved	100	0.024	0.024	0.024		
	Classification	Unpaved	20	0.293	0.059	0.083		
©1982-2020 Innovyze								
COWI UK Limited		Page 26						
--	------------------	---------------------------						
Kelvin House								
RTC Business Park, London Rd		Contraction of the second						
Derby DE24 8UP		Micco						
Date 11/04/2023 17:14	Designed by AHSI	Dcainago						
File Hole Farm West of farm Lane Rev 5.MDX	Checked by	Diamaye						
Innovyze	Network 2020.1.3							

<u>Area Summary for Storm</u>

Pipe	PIMP	PIMP	PIMP	Gross	Imp.	Pipe Total
Number	Туре	Name	(%)	Area (ha)	Area (ha)	(ha)
8.001	Classification	Paved	100	0.014	0.014	0.014
	Classification	Unpaved	20	0.021	0.004	0.018
8.002	Classification	Paved	100	0.096	0.096	0.096
9.000	Classification	Paved	100	0.193	0.193	0.193
9.001	-	-	100	0.000	0.000	0.000
8.003	Classification	Paved	100	0.006	0.006	0.006
	Classification	Unpaved	20	0.033	0.007	0.013
8.004	Classification	Unpaved	20	0.073	0.015	0.015
	Classification	Paved	100	0.006	0.006	0.020
8.005	Classification	Unpaved	20	0.768	0.154	0.154
	Classification	Paved	100	0.013	0.013	0.167
4.018	Classification	Unpaved	20	0.588	0.118	0.118
4.019	Classification	Unpaved	20	0.113	0.023	0.023
4.020	-	-	100	0.000	0.000	0.000
4.021	Classification	Unpaved	20	0.958	0.192	0.192
4.022	-	-	100	0.000	0.000	0.000
4.023	Classification	Unpaved	20	1.538	0.308	0.308
4.024	-	-	100	0.000	0.000	0.000
4.025	Classification	Unpaved	20	1.382	0.276	0.276
4.026	-	-	100	0.000	0.000	0.000
4.027	-	-	100	0.000	0.000	0.000
4.028	-	-	100	0.000	0.000	0.000
				Total	Total	Total
				23.193	5.292	5.292

©1982-2020 Innovyze

COWI UK Limited		Page 27
Kelvin House		
RTC Business Park, London Rd		Sec. 1
Derby DE24 8UP		Mirco
Date 11/04/2023 17:14	Designed by AHSI	Desinado
File Hole Farm West of farm Lane Rev 5.MDX	Checked by	Diamage
Innovyze	Network 2020.1.3	
<u>Free Flowi</u> Outfall Outfa Pipe Number Name	ing Outfall Details for Storm All C. Level I. Level Min D,L W e (m) (m) I. Level (mm) (mm) (m)	
\$4.028	S 36.000 35.490 0.000 0 0	
Simul	ation Criteria for Storm	
Volumetric Runoff Coeff 1.000 Manhole Head Areal Reduction Factor 1.000 Foul Sewage Hot Start (mins) 0 Additional Flow Hot Start Level (mm) 0 MADD Facto: Number of Input Hydrographs 0 Num Number of Online Controls 3 Number	loss Coeff (Global) 0.500Inlet Coefficciene per hectare (1/s) 0.000Flow per Person per Day (1/per/dayw - % of Total Flow 0.000Run Time (minsr * 10m³/ha Storage 0.000Output Interval (minsmber of Offline Controls 0Number of Time/Area Diagrams 0ver of Storage Structures 5Number of Real Time Controls 0	t 0.800 ·) 0.000 ·) 60 ·) 1
<u>Synt</u>	thetic Rainfall Details	
Rainfall Model Return Period (years) Region England and	FSRM5-60 (mm)20.000Cv (Summer)1.0001Ratio R0.400Cv (Winter)0.840d WalesProfile TypeSummerStorm Duration (mins)30	
	©1982-2020 Innovyze	

COWI UK Limited		Page 28
Kelvin House		
RTC Business Park, London Rd		Concerned and
Derby DE24 8UP		Mirco
Date 11/04/2023 17:14	Designed by AHSI	Dcainago
File Hole Farm West of farm Lane Rev 5.MDX	Checked by	Diamaye
Innovyze	Network 2020.1.3	
<u>Onl</u>	ine Controls for Storm	
Orifice Manhole:	S48, DS/PN: S7.001, Volume (m ³): 2.8	
Diameter (m) 0.050 Disch	narge Coefficient 0.600 Invert Level (m) 42.989	
Orifice Manhole: S	564, DS/PN: S4.024, Volume (m³): 13.2	
Diameter (m) 0.300 Disch	narge Coefficient 0.600 Invert Level (m) 37.472	
Orifice Manhole:	S66, DS/PN: S4.026, Volume (m ³): 7.7	
Diameter (m) 0.220 Disch	narge Coefficient 0.600 Invert Level (m) 36.479	
	©1982-2020 Innovyze	

COWI UK Limited		Page 29
Kelvin House		
RTC Business Park, London Rd		The second
Derby DE24 8UP		Mirco
Date 11/04/2023 17:14	Designed by AHSI	Dcainago
File Hole Farm West of farm Lane Rev 5.MDX	Checked by	Diamage
Innovyze	Network 2020.1.3	
Stora	ge Structures for Storm	
Tank or Pon	d Manhole: S48, DS/PN: S7.001	
I	nvert Level (m) 42.989	
Depth (m)	Area (m ²) Depth (m) Area (m ²)	
0.000	49.1 1.500 230.8	
Tank or Pon	d Manhole: S60, DS/PN: S4.020	
I	nvert Level (m) 39.820	
Depth (m)	Area (m ²) Depth (m) Area (m ²)	
0.000	820.6 1.500 1342.8	
Tank or Pon	d Manhole: S62, DS/PN: S4.022	
I	nvert Level (m) 38.410	
Depth (m)	Area (m ²) Depth (m) Area (m ²)	
0.000	1837.0 1.500 2585.6	
(01982-2020 Innovyze	

COWI UK Limited		Page 30
Kelvin House		
RTC Business Park, London Rd		Constanting of the second
Derby DE24 8UP		Mirco
Date 11/04/2023 17:14	Designed by AHSI	Dcainado
File Hole Farm West of farm Lane Rev 5.MDX	Checked by	Diamage
Innovyze	Network 2020.1.3	
Tank or Pon	nd Manhole: S64, DS/PN: S4.024 Invert Level (m) 37.472	
Dopth (m)	Area (m^2) Depth (m) Area (m^2)	
	Area (m) Depth (m) Area (m)	
0.000	2798.4 1.500 3715.2	
Tank or Pon	nd Manhole: S66, DS/PN: S4.026	
1	Invert Level (m) 36.479	
Depth (m)	Area (m²) Depth (m) Area (m²)	
0.000	2249.3 1.500 3151.5	
	01982-2020 Innovvze	
	STICS FOR THHONÀTE	

COWI UK Limited													P	age 31	
Kelvin House															
RTC Business Pa	rk, Lo	ndon Rd												The second	
Derby DE24 8UP														Mirco	
Date 11/04/2023	17:14					Des	igned	by AHSI						Dcaina	an
File Hole Farm N	West o	f farm L	ane Rev	5.MDX		Che	cked b	У						Dialita	ye
Innovyze						Net	work 2	020.1.3							
		<u>Su</u>	immary o	<u>f Crit</u>	<u>ical</u>	<u>Result</u>	<u>s by M</u>	aximum Lev	vel (Ra	<u>nk 1)</u>	for Stor	<u>rm</u>			
						<u>Sim</u>	ulation	<u>Criteria</u>							
Area	al Redu	ction Fact	or 1.000	Manh	ole Hea	adloss (Coeff (G	Global) 0.50	00	MADD Fa	ctor * 10	m ³ /ha Sto	rage 0	.000	
He	ot Star	t Level (min	um) 0	Additi	onal F.	low - %	of Tota	al Flow 0.00)0)0 Flow p	er Pers	on per Da	v (l/per/	dav) 0	.000	
									-		-		<u> </u>		
	1	Number of 1 Number of	Input Hyd f Online	rograph Control	.s 0 .s 3 Nu	Number Imber of	of Offl Storag	ine Control: e Structure:	s 0 Numbe s 5 Numbe	er of T er of Re	ime/Area 1 eal Time (Diagrams (Controls ())		
						Svnthe	tic Rair	nfall Detail	s						
			Rainfall	. Model Region	Englar	nd and W	FSR M5 Vales	5-60 (mm) 20 Ratio R ().000 Cv).400 Cv	(Summer (Winter	1.0001.000				
		Ma	rgin for	Flood H	Risk Wa Analysi	arning (ls Times	(mm) 300 step Fi	.0 DTS Stat ne DVD Stat	us ON I us OFF	inertia	Status OF	Έ			
				Profile	e(s)					Sumr	ner and Wi	inter			
		5.1	Duration	(s) (mi	lns) 15	5, 30, 6	50, 120,	180, 240,	360, 480,	, 600, '	720, 960,	1440			
		Retur	n Period(s) (yea Change	irs) (%)						1, 30,	, 100), 45			
			orringee	onunge	(0)						0, 0	, 10			
							Water	Surcharged	Flooded			Maximum	Pipe		
	US/MH					US/CL	Level	Depth	Volume	Flow /	Maximum	Velocity	Flow		
PN	Name		Event			(m)	(m)	(m)	(m³)	Cap.	Vol (m³)	(m/s)	(l/s)	Status	
S4.000	S1	15 minute	100 year	Summer	I+45%	71.685	71.295	-0.390	0.000	0.04	0.105	0.8	72.7	OK	
S4.001	S2	15 minute	100 year	Summer	I+45%	68.030	67.659	-0.371	0.000	0.05	0.230	1.0	114.4	OK	
S4.002	S3	15 minute	100 year	Summer	I+45%	62.241	61.886	-0.355	0.000	0.07	0.262	0.9	126.0	OK	
						©198	2-2020	Innovyze							

COWI UK Limited	Page 32	
Kelvin House		
RTC Business Park, London Rd		The second second
Derby DE24 8UP		Mirco
Date 11/04/2023 17:14	Designed by AHSI	Desinado
File Hole Farm West of farm Lane Rev 5.MDX	Checked by	Diamage
Innovyze	Network 2020.1.3	· ·

	US/MH							US/CL	Water Level	Surcharged Depth	Flooded Volume	Flow /	Maximum	Maximum Velocity	Pipe Flow	Status
PN	name				svent			(111)	(111)	(111)	(111-)	Cap.	VOT (III-)	(111/5)	(1/5)	Status
S4.003	S4	15	minute	100	year	Summer	I+45%	60.676	60.323	-0.353	0.000	0.07	0.304	1.0	131.8	OK
S4.004	S5	15	minute	100	year	Summer	I+45%	59.496	59.151	-0.345	0.000	0.08	0.333	1.0	141.7	OK
S4.005	S6	15	minute	100	year	Summer	I+45%	58.056	57.725	-0.331	0.000	0.09	0.409	1.0	164.3	OK
S4.006	s7	15	minute	100	year	Summer	I+45%	54.759	54.425	-0.334	0.000	0.09	0.400	1.2	188.8	OK
S4.007	S8	30	minute	100	year	Summer	I+45%	53.337	52.422	-0.915	0.000	0.02	0.410	1.3	171.5	OK
S5.000	S9	15	minute	100	year	Summer	I+45%	85.259	84.874	-0.385	0.000	0.04	0.110	0.8	74.4	OK
S5.001	S10	15	minute	100	year	Summer	I+45%	83.968	83.700	-0.268	0.000	0.17	0.861	0.5	143.7	FLOOD RISK*
S5.002	S11	15	minute	100	year	Summer	I+45%	83.508	83.283	-0.225	0.000	0.23	4.226	0.8	267.7	FLOOD RISK*
S5.003	S12	15	minute	100	year	Summer	I+45%	81.969	81.737	-0.232	0.000	0.24	2.294	1.2	399.1	FLOOD RISK*
S5.004	S13	15	minute	100	year	Summer	I+45%	80.278	80.028	-0.250	0.000	0.20	1.053	2.0	588.9	FLOOD RISK*
S5.005	S14	15	minute	100	year	Summer	I+45%	72.346	72.123	-0.223	0.000	0.25	0.605	1.9	685.1	FLOOD RISK*
S5.006	S15	15	minute	100	year	Summer	I+45%	64.676	64.483	-0.193	0.000	0.33	0.796	1.6	706.6	FLOOD RISK*
S5.007	S16	15	minute	100	year	Summer	I+45%	61.433	60.850	-0.582	0.000	0.09	1.369	1.4	713.8	OK
S5.008	S17	15	minute	100	year	Summer	I+45%	58.910	58.983	0.073	72.971	1.12	78.237	0.4	440.1	FLOOD
S5.009	S18	30	minute	100	year	Summer	I+45%	60.624	58.902	-1.722	0.000	0.03	18.250	0.4	438.0	OK
S5.010	S19	30	minute	100	year	Summer	I+45%	62.052	58.853	-3.199	0.000	0.01	7.994	0.4	446.7	OK
S5.011	S20	15	minute	100	year	Summer	I+45%	63.542	58.795	-4.746	0.000	0.00	8.524	0.4	469.7	OK
S5.012	S21	30	minute	100	year	Summer	I+45%	63.064	58.681	-4.384	0.000	0.00	11.211	0.4	477.5	OK
S5.013	S22	30	minute	100	year	Summer	I+45%	62.863	58.670	-4.193	0.000	0.00	2.063	0.4	517.4	OK
S5.014	S23	30	minute	100	year	Summer	I+45%	59.987	58.304	-1.683	0.000	0.01	4.986	1.5	528.0	OK
S5.015	S24	30	minute	100	year	Summer	I+45%	56.635	55.728	-0.907	0.000	0.03	1.042	1.6	536.0	OK
S5.016	S25	30	minute	100	year	Summer	I+45%	54.124	54.177	1.227	53.047	1.59	120.412	1.9	373.4	FLOOD
S5.017	S26	30	minute	100	year	Summer	I+45%	53.398	52.430	-0.968	0.000	0.06	2.243	0.3	373.8	OK
S4.008	S27	30	minute	100	year	Summer	I+45%	53.100	52.420	0.231	0.000	1.61	30.271	2.3	449.3	SURCHARGED*
S4.009	S28	30	minute	100	year	Summer	I+45%	52.450	51.792	-0.658	0.000	0.05	1.150	1.3	449.1	OK
								©1	982-20	20 Innovyz	ze					

COWI UK Limited		Page 33
Kelvin House		
RTC Business Park, London Rd		The second second
Derby DE24 8UP		Mirco
Date 11/04/2023 17:14	Designed by AHSI	Desinado
File Hole Farm West of farm Lane Rev 5.MDX	Checked by	Diamaye
Innovyze	Network 2020.1.3	·

PN	US/MH Name	Event	US/CL (m)	Water Level (m)	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	Maximum Vol (m³)	Maximum Velocity (m/s)	Pipe Flow (l/s)	Status
S4.010	S29	30 minute 100 year Summer I+45% 5	51.463	50.430	-1.033	0.000	0.05	10.792	0.3	435.3	OK
S6.000	S30	15 minute 100 year Summer I+45%	70.727	70.298	-0.429	0.000	0.02	0.066	0.6	29.1	OK
S6.001	S31	15 minute 100 year Summer I+45% 6	68.175	67.787	-0.388	0.000	0.04	0.165	1.0	91.5	OK
S6.002	S32	15 minute 100 year Summer I+45% 6	63.360	63.035	-0.325	0.000	0.10	0.351	1.1	189.6	OK
S6.003	S33	15 minute 100 year Summer I+45% 6	60.688	60.385	-0.303	0.000	0.12	0.504	1.2	242.0	OK
S6.004	S34	15 minute 100 year Summer I+45% 5	59.589	59.332	-0.257	0.000	0.19	0.789	1.2	362.8	FLOOD RISK*
S6.005	S35	15 minute 100 year Summer I+45% 5	57.748	57.542	-0.206	0.000	0.28	1.210	1.4	526.3	FLOOD RISK*
S6.006	S36	15 minute 100 year Summer I+45% 5	54.630	54.486	-0.144	0.000	0.44	1.955	1.5	781.3	FLOOD RISK*
S6.007	S37	15 minute 100 year Summer I+45% 5	52.454	52.365	-0.089	0.000	0.62	2.817	1.2	850.7	FLOOD RISK*
S6.008	S38	15 minute 100 year Summer I+45% 5	51.623	51.651	0.028	28.242	0.95	35.632	0.8	761.9	FLOOD
S6.009	S39	30 minute 100 year Summer I+45% 5	51.023	51.024	0.001	1.273	0.49	38.294	0.7	732.2	FLOOD
S6.010	S40	30 minute 100 year Summer I+45% 5	50.999	51.019	0.170	19.797	0.97	23.856	3.5	602.8	FLOOD
S4.011	S41	30 minute 100 year Summer I+45% 5	50.677	50.388	-0.289	0.000	0.44	160.391	0.5	935.5	FLOOD RISK*
S4.012	S42	30 minute 100 year Summer I+45% 5	50.340	50.380	0.355	40.628	1.19	63.495	4.0	790.1	FLOOD
S4.013	S43	30 minute 100 year Summer I+45% 4	49.116	49.009	-0.107	0.000	0.56	1.154	1.2	806.9	FLOOD RISK*
S4.014	S44	30 minute 100 year Summer I+45% 4	47.996	47.879	-0.117	0.000	0.53	3.560	1.4	866.0	FLOOD RISK*
S4.015	S45	30 minute 100 year Summer I+45% 4	46.939	46.872	-0.067	0.000	0.69	3.848	1.3	1002.2	FLOOD RISK*
S4.016	S46	30 minute 100 year Summer I+45% 4	45.056	44.965	-0.091	0.000	0.62	3.991	1.5	1069.6	FLOOD RISK*
S7.000	S47	240 minute 100 year Summer I+45% 4	44.896	43.353	-0.343	0.000	0.03	0.152	0.8	9.1	OK*
S7.001	S48	240 minute 100 year Summer I+45% 4	44.489	43.352	-0.012	0.000	0.03	25.139	0.0	2.6	OK*
S4.017	S49	30 minute 100 year Summer I+45% 4	44.235	43.328	-0.907	0.000	0.05	5.403	1.8	1145.1	OK
S8.000	S50	15 minute 100 year Summer I+45% 4	46.970	46.581	-0.389	0.000	0.04	0.106	0.7	67.3	OK
S8.001	S51	15 minute 100 year Summer I+45% 4	45.808	45.444	-0.364	0.000	0.06	0.290	0.7	82.4	OK
S8.002	S52	15 minute 100 year Summer I+45% 4	45.000	44.661	-0.339	0.000	0.08	0.578	1.1	168.0	OK
S9.000	S53	15 minute 100 year Summer I+45% 4	44.685	44.686	1.201	0.212	1.23	2.855	2.1	146.3	FLOOD
			©19	982-20	20 Innovyz	ze					

COWI UK Limited		Page 34
Kelvin House		
RTC Business Park, London Rd		Contraction of the second
Derby DE24 8UP		Mirco
Date 11/04/2023 17:14	Designed by AHSI	Dcainago
File Hole Farm West of farm Lane Rev 5.MDX	Checked by	Diamage
Innovyze	Network 2020.1.3	

	US/MH					US/CL	Water Level	Surcharged Depth	Flooded Volume	Flow /	Maximum	Maximum Velocity	Pipe Flow	
PN	Name		Event			(m)	(m)	(m)	(m³)	Cap.	Vol (m³)	(m/s)	(1/s)	Status
S9.001	S54	15 minute 3	100 year	Summer	I+45%	43.975	43.607	0.832	0.000	3.11	4.978	2.1	141.4	SURCHARGED
S8.003	S55	60 minute 1	100 year	Winter	I+45%	43.770	43.259	-0.511	0.000	0.02	12.474	0.3	158.0	OK
S8.004	S56	60 minute 2	100 year	Winter	I+45%	43.726	43.259	-0.467	0.000	0.05	5.580	0.3	165.7	OK
S8.005	S57	60 minute 1	100 year	Winter	I+45%	43.537	43.259	-0.278	0.000	0.02	44.082	1.0	223.9	FLOOD RISK*
S4.018	S58	60 minute 1	100 year	Winter	I+45%	43.137	43.256	2.091	119.361	1.53	472.781	4.1	810.6	FLOOD
S4.019	S59	30 minute 3	100 year	Winter	I+45%	42.470	40.583	0.000	0.000	2.32	6.200	4.2	829.2	SURCHARGED*
S4.020	S60	60 minute 3	100 year	Summer	I+45%	41.320	40.791	0.471	0.000	1.64	957.489	3.1	613.0	SURCHARGED*
S4.021	S61	120 minute 2	100 year	Summer	I+45%	41.130	40.030	0.000	0.000	0.95	1.402	3.7	608.2	SURCHARGED*
S4.022	S62	120 minute 2	100 year	Summer	I+45%	39.910	39.174	0.264	0.000	1.86	1546.284	2.1	410.3	SURCHARGED*
S4.023	S63	180 minute 2	100 year	Summer	I+45%	39.800	38.709	-0.143	0.000	0.86	1.210	2.8	418.2	OK*
S4.024	S64	480 minute 2	100 year	Summer	I+45%	38.972	38.378	0.406	0.000	0.60	2787.708	1.9	132.6	SURCHARGED*
S4.025	S65	15 minute 2	100 year	Summer	I+45%	38.858	37.650	-0.280	0.000	0.40	0.458	3.2	267.7	OK*
S4.026	S66	960 minute 3	100 year	Summer	I+45%	37.979	37.410	0.431	0.000	0.48	2349.335	0.4	70.8	SURCHARGED*
S4.027	S67	960 minute 2	100 year	Summer	I+45%	37.847	36.613	-1.234	0.000	0.01	0.410	0.5	70.8	OK
S4.028	S68	960 minute 2	100 year	Summer	I+45%	36.000	35.729	-0.271	0.000	0.13	2.028	0.3	70.8	FLOOD RISK*

©1982-2020 Innovyze

COWI UK Limited								Page	1
Kelvin House								(
RTC Business Park, London Rd									Sec. 1
Derby DE24 8UP									Mirco
Date 11/04/2023 17:16	Desig	ned by	AHSI					-	MILIU
File Hole Farm West of farm Lane Rev 5 MDX	Checke	ed by							Jrainage
	Notwo	ck 2020) 1 3						
IIIIOvyze	Netwo:	LK 2020	0.1.5						
Summary of Critical R	esults k	ov Maxi	mum Level	(Rank	1) for	Storm			
<u>bunnary or orrerour</u>	<u>courco</u> x	<u>y 110.111</u>		(nam	<u> </u>	DEOTIN			
	<u>Simula</u>	tion Cr	<u>iteria</u>						
Volumetric Runoff Coeff 1.000 Manhole Hea	dloss Coe	ff (Glo	oal) 0.500			Inlet Co	peffiecien	t 0.80	0
Areal Reduction Factor 1.000 Foul Sewa	ge per he	ctare (1/s) 0.000 1	Flow per	Person	per Day	(l/per/day) 0.00	0
HOT START (MINS) U Additional Fi	OW = % OI or * 10m ³	Total /ha Sto	Flow 0.000						
	01 1011	/11a 500	Lage 0.000						
Number of Input Hydrographs 0 N	umber of	Offline	Controls 0	Number	of Time,	/Area Diag	grams O		
Number of Online Controls 3 Num	ber of St	orage S	tructures 5	Number	of Real	Time Cont	trols 0		
	. , ,	200 0		011 T					
Margin for Flood Risk Wai Analysis	ning (mm) Timester	300.0 Fine	DVD Status	ON Iner	tia Sta	tus OFF			
inital you	TTHESCOP	1 1110	DVD Status	011					
	Raint	fall fil	.e (s)						
	ä	analysed	L						
30 110-	r 1440 pl	119 10 v	oor 1110 Wir	ator					
		ub 10 y	cur rrio wr	1001					
		Water	Surcharged	Flooded			Maximum	Pipe	
US/MH	US/CL	Level	Depth	Volume	Flow /	Maximum	Velocity	Flow	
PN Name Event	(m)	(m)	(m)	(m³)	Cap.	Vol (m³)	(m/s)	(l/s)	Status
C4 000	71 605	71 200	0 405	0 000	0 00	0 010	0.0	0 1	OF
54.000 SI 30 year 1440 plus 10 year 1440 Wint SA 001 S2 30 year 1440 plus 10 year 1440 Wint	er 68 030	11.200 67 5/9	-U.485 _0 /82	0.000	0.00	0.010	0.3	2.1 3.3	OK
S4.002 S3 30 year 1440 plus 10 year 1440 Wint	er 62.241	61.762	-0.479	0.000	0.00	0.019	0.3	3.7	OK
S4.003 S4 30 year 1440 plus 10 year 1440 Winte	er 60.676	60.197	-0.479	0.000	0.00	0.020	0.3	3.8	OK
S4.004 S5 30 year 1440 plus 10 year 1440 Wint	er 59.496	59.018	-0.478	0.000	0.00	0.022	0.3	4.1	OK
S4.005 S6 30 year 1440 plus 10 year 1440 Wint	er 58.056	57.581	-0.475	0.000	0.00	0.025	0.3	5.0	OK
S4.006 S7 30 year 1440 plus 10 year 1440 Wint	er 54.759	54.284	-0.475	0.000	0.00	0.025	0.4	5.7	OK
	©1982-2	2020 Ir	novyze						

COWI UK Limited		Page 2
Kelvin House		
RTC Business Park, London Rd		Contraction of the second
Derby DE24 8UP		Micco
Date 11/04/2023 17:16	Designed by AHSI	Dcainago
File Hole Farm West of farm Lane Rev 5.MDX	Checked by	Diamage
Innovyze	Network 2020.1.3	

			- /	Water	Surcharged	Flooded	(Maximum	Pipe	
	US/MH	Us	S/CL	Level	Depth	Volume	Flow /	Maximum	Velocity	Flow	C + - +
PN	Name	Event	(m)	(m)	(m)	(m ³)	Cap.	VOT (M3)	(m/s)	(1/S)	Status
S4.007	S8	30 year 1440 plus 10 year 1440 Winter 53	3.337	52.258	-1.079	0.000	0.00	0.020	0.2	5.7	OK
S5.000	S9	30 year 1440 plus 10 year 1440 Winter 85	5.259	84.775	-0.484	0.000	0.00	0.011	0.2	2.2	OK
S5.001	S10	30 year 1440 plus 10 year 1440 Winter 83	3.968	83.503	-0.465	0.000	0.00	0.038	0.2	4.2	OK
S5.002	S11	30 year 1440 plus 10 year 1440 Winter 83	3.508	83.052	-0.456	0.000	0.01	0.173	0.3	8.2	OK
S5.003	S12	30 year 1440 plus 10 year 1440 Winter 81	.969	81.513	-0.456	0.000	0.01	0.113	0.4	12.3	OK
S5.004	S13	30 year 1440 plus 10 year 1440 Winter 80	.278	79.818	-0.460	0.000	0.01	0.044	0.7	18.0	OK
S5.005	S14	30 year 1440 plus 10 year 1440 Winter 72	2.346	71.892	-0.454	0.000	0.01	0.051	0.7	21.0	OK
S5.006	S15	30 year 1440 plus 10 year 1440 Winter 64	1.676	64.229	-0.447	0.000	0.01	0.060	0.6	22.0	OK
S5.007	S16	30 year 1440 plus 10 year 1440 Winter 61	.433	60.570	-0.862	0.000	0.00	0.070	0.5	22.5	OK
S5.008	S17	30 year 1440 plus 10 year 1440 Winter 58	8.910	58.557	-0.353	0.000	0.06	0.381	0.2	23.1	OK
S5.009	S18	30 year 1440 plus 10 year 1440 Winter 60	.624	58.492	-2.132	0.000	0.00	0.848	0.2	23.7	OK
S5.010	S19	30 year 1440 plus 10 year 1440 Winter 62	2.052	58.449	-3.603	0.000	0.00	0.193	0.1	24.8	OK
S5.011	S20	30 year 1440 plus 10 year 1440 Winter 63	3.542	58.388	-5.154	0.000	0.00	0.196	0.0	27.9	OK
S5.012	S21	30 year 1440 plus 10 year 1440 Winter 63	3.064	58.290	-4.774	0.000	0.00	0.187	0.1	28.2	OK
S5.013	S22	30 year 1440 plus 10 year 1440 Winter 62	2.863	58.274	-4.589	0.000	0.00	0.182	0.1	29.9	OK
S5.014	S23	30 year 1440 plus 10 year 1440 Winter 59	9.987	58.097	-1.890	0.000	0.00	0.078	0.4	30.3	OK
S5.015	S24	30 year 1440 plus 10 year 1440 Winter 56	5.635	55.525	-1.110	0.000	0.00	0.074	0.7	30.7	OK
S5.016	S25	30 year 1440 plus 10 year 1440 Winter 54	1.124	52.570	-0.380	0.000	0.13	0.143	0.9	30.8	OK*
S5.017	S26	30 year 1440 plus 10 year 1440 Winter 53	3.398	51.884	-1.514	0.000	0.01	0.222	0.2	31.1	OK
S4.008	S27	30 year 1440 plus 10 year 1440 Winter 53	3.100	51.809	-0.380	0.000	0.13	0.330	1.0	36.8	OK*
S4.009	S28	30 year 1440 plus 10 year 1440 Winter 52	2.450	51.604	-0.846	0.000	0.00	0.141	0.7	36.8	OK
S4.010	S29	30 year 1440 plus 10 year 1440 Winter 51	.463	49.900	-1.563	0.000	0.00	0.232	0.2	37.0	OK
S6.000	S30	30 year 1440 plus 10 year 1440 Winter 70	.727	70.235	-0.492	0.000	0.00	0.003	0.2	0.9	OK
S6.001	S31	30 year 1440 plus 10 year 1440 Winter 68	8.175	67.690	-0.485	0.000	0.00	0.012	0.3	2.5	OK
S6.002	S32	30 year 1440 plus 10 year 1440 Winter 63	3.360	62.885	-0.475	0.000	0.00	0.025	0.4	5.2	OK
		©19	82-2	020 In	novyze						

COWI UK Limited		Page 3
Kelvin House		
RTC Business Park, London Rd		Sec. and
Derby DE24 8UP		Mirco
Date 11/04/2023 17:16	Designed by AHSI	Dcainago
File Hole Farm West of farm Lane Rev 5.MDX	Checked by	Diamage
Innovyze	Network 2020.1.3	

	US/MH		US/CL	Water Level	Surcharged Depth	Flooded Volume	Flow /	Maximum	Maximum Velocity	Pipe Flow	
PN	Name	Event	(m)	(m)	(m)	(m³)	Cap.	Vol (m³)	(m/s)	(1/s)	Status
S6.003	S33	30 year 1440 plus 10 year 1440 Winter 6	60.688	60.216	-0.472	0.000	0.00	0.029	0.4	6.6	OK
S6.004	S34	30 year 1440 plus 10 year 1440 Winter 5	59.589	59.126	-0.463	0.000	0.01	0.040	0.4	9.9	OK
S6.005	S35	30 year 1440 plus 10 year 1440 Winter 5	57.748	57.294	-0.454	0.000	0.01	0.052	0.5	14.6	OK
S6.006	S36	30 year 1440 plus 10 year 1440 Winter 5	54.630	54.188	-0.442	0.000	0.01	0.066	0.6	21.9	OK
S6.007	S37	30 year 1440 plus 10 year 1440 Winter 5	52.454	52.024	-0.430	0.000	0.02	0.081	0.5	23.9	OK
S6.008	S38	30 year 1440 plus 10 year 1440 Winter 5	51.623	51.228	-0.395	0.000	0.04	0.232	0.3	29.1	OK
S6.009	S39	30 year 1440 plus 10 year 1440 Winter 5	51.023	50.476	-0.547	0.000	0.02	0.472	0.4	29.1	OK
S6.010	S40	30 year 1440 plus 10 year 1440 Winter 5	50.999	50.418	-0.431	0.000	0.05	0.080	1.8	29.1	OK*
S4.011	S41	30 year 1440 plus 10 year 1440 Winter 5	50.677	49.776	-0.901	0.000	0.03	9.323	0.2	66.2	OK
S4.012	S42	30 year 1440 plus 10 year 1440 Winter 5	50.340	49.632	-0.393	0.000	0.10	0.352	2.2	68.6	OK*
S4.013	S43	30 year 1440 plus 10 year 1440 Winter 4	49.116	48.740	-0.376	0.000	0.05	0.174	0.7	72.5	OK
S4.014	S44	30 year 1440 plus 10 year 1440 Winter 4	47.996	47.615	-0.381	0.000	0.05	0.220	0.7	75.5	OK
S4.015	S45	30 year 1440 plus 10 year 1440 Winter 4	46.939	46.570	-0.369	0.000	0.06	0.268	0.7	81.6	OK
S4.016	S46	30 year 1440 plus 10 year 1440 Winter 4	45.056	44.678	-0.378	0.000	0.05	0.239	0.8	84.5	OK
S7.000	S47	30 year 1440 plus 10 year 1440 Winter 4	44.896	43.203	-0.493	0.000	0.00	0.002	0.2	1.0	OK*
S7.001	S48	30 year 1440 plus 10 year 1440 Winter 4	44.489	43.100	-0.264	0.000	0.01	6.123	0.0	0.9	OK*
S4.017	S49	30 year 1440 plus 10 year 1440 Winter 4	44.235	43.052	-1.183	0.000	0.00	0.586	0.9	88.6	OK
S8.000	S50	30 year 1440 plus 10 year 1440 Winter 4	46.970	46.485	-0.485	0.000	0.00	0.010	0.2	2.0	OK
S8.001	S51	30 year 1440 plus 10 year 1440 Winter 4	45.808	45.327	-0.481	0.000	0.00	0.018	0.2	2.4	OK
S8.002	S52	30 year 1440 plus 10 year 1440 Winter 4	45.000	44.523	-0.477	0.000	0.00	0.040	0.4	4.7	OK
S9.000	S53	30 year 1440 plus 10 year 1440 Winter 4	44.685	43.223	-0.262	0.000	0.04	0.058	0.9	4.6	OK
S9.001	S54	30 year 1440 plus 10 year 1440 Winter 4	43.975	42.543	-0.232	0.000	0.10	0.144	0.4	4.6	OK
S8.003	S55	30 year 1440 plus 10 year 1440 Winter 4	43.770	42.495	-1.275	0.000	0.00	0.456	0.1	9.7	OK
S8.004	S56	30 year 1440 plus 10 year 1440 Winter 4	43.726	42.488	-1.239	0.000	0.00	0.106	0.1	10.2	OK
S8.005	S57	30 year 1440 plus 10 year 1440 Winter 4	43.537	42.407	-1.130	0.000	0.00	0.054	0.5	14.0	OK
		©1	982-2	020 In	novyze						

COWI UK Limited					
Kelvin House					
RTC Business Park, London Rd		Concernant of the second			
Derby DE24 8UP		Mirco			
Date 11/04/2023 17:16	Designed by AHSI	Desinado			
File Hole Farm West of farm Lane Rev 5.MDX	Checked by	Diamage			
Innovyze	Network 2020.1.3				

	US/MH		US/CL	Water Level	Surcharged Depth	Flooded Volume	Flow /	Maximum	Maximum Velocity	Pipe Flow	
PN	Name	Event	(m)	(m)	(m)	(m³)	Cap.	Vol (m³)	(m/s)	(l/s)	Status
S4.018	S58	30 year 1440 plus 10 year 1440 Winter 4	43.137	40.816	-0.349	0.000	0.20	0.218	2.1	105.2	OK*
S4.019	S59	30 year 1440 plus 10 year 1440 Winter 4	42.470	40.268	-0.315	0.000	0.30	0.378	1.6	105.8	OK*
S4.020	S60	30 year 1440 plus 10 year 1440 Winter 4	41.320	39.997	-0.323	0.000	0.27	151.154	1.6	102.6	OK*
S4.021	S61	30 year 1440 plus 10 year 1440 Winter 4	41.130	39.666	-0.364	0.000	0.17	0.185	2.5	106.8	OK*
S4.022	S62	30 year 1440 plus 10 year 1440 Winter 3	39.910	38.636	-0.274	0.000	0.42	427.768	1.1	93.0	OK*
S4.023	S63	30 year 1440 plus 10 year 1440 Winter 3	39.800	38.503	-0.349	0.000	0.20	0.351	2.0	98.1	OK*
S4.024	S64	30 year 1440 plus 10 year 1440 Winter 3	38.972	37.897	-0.075	0.000	0.28	1243.282	1.6	62.7	OK*
S4.025	S65	30 year 1440 plus 10 year 1440 Winter 3	38.858	37.534	-0.396	0.000	0.10	0.148	2.2	65.1	OK*
S4.026	S66	30 year 1440 plus 10 year 1440 Winter 3	37.979	36.972	-0.007	0.000	0.32	1179.015	0.2	46.6	OK*
S4.027	S67	30 year 1440 plus 10 year 1440 Winter 3	37.847	36.586	-1.261	0.000	0.00	0.283	0.5	46.6	OK
S4.028	S68	30 year 1440 plus 10 year 1440 Winter 3	36.000	35.695	-0.305	0.000	0.09	1.353	0.2	46.6	OK

©1982-2020 Innovyze

Appendix G: Pre-application Advice

Essex County Council Development and Flood Risk Waste & Environment E3 County Hall Chelmsford Essex CM1 1QH

Date: 12th January 2023 Our Ref SUDS-006477

Dear Ms Moulson,

Pre-application Response – SUDSPA473054722 - Hole Farm Community Woodland

Thank you for contacting us for pre-application advice which provides Essex County Council (ECC) with the opportunity to assess and advise on the proposed surface water drainage strategy for the aforementioned planning application.

As the Lead Local Flood Authority (LLFA) ECC provides advice on SuDS schemes for major developments. ECC have been statutory consultee on surface water since the 15th April 2015.

In providing advice this Council looks to ensure sustainable drainage proposals comply with the required standards as set out in the following documents:

- Non-statutory technical standards for sustainable drainage systems
- Essex County Council's (ECC's) adopted Sustainable Drainage Systems
 Design Guide
- The CIRIA SuDS Manual (C753)
- BS8582 Code of practice for surface water management for development sites.

Lead Local Flood Authority position

After reviewing the submitted documents please see a summary of our comments below:

ECC is statutory consultee to ensure the adoption of sustainable ways of surface water management where above ground storage is our preferred option when considering drainage strategies for new developments. Above ground storage options maximize the amenity and biodiversity benefits of SUDS. It is preferable that these are implemented throughout the development and integrated into the proposed landscaping as extensively as practicable.

Overall Drainage Strategy

Overall the drainage strategy is acceptable but there were a few king things that we discussed that need to be altered or considered moving forward. The first point was that the climate change allowance needs to be changed from 25% to 45%. In line with the drainage hierarchy we discussed the importance of utilising rainwater reuse wherever possible. Although infiltration is unlikely based on the soil types this will need to be confirmed with infiltration testing. Discharge rates and water treatment were all acceptable. Adoption by Forestry England was discussed but this will be confirmed at a later stage. Detailed modelling and calculations will be required but the principles of the drainage scheme proposed are acceptable.

Flood Risk Assessment

A flood risk assessment should consider all forms of flood risk.

These include:

- Flooding from the sea or tidal flooding;
- Flooding from land;
- Flooding from groundwater;
- Flooding from sewers; and
- Flooding from reservoirs, canals, and other artificial sources.

It should be considered how any existing flood risk will interact with the proposed development and associated drainage scheme.

Run off Destinations

Surface water run- off should be disposed of in line with the discharge hierarchy and should be investigated in the below order:

- Rainwater reuse
- Discharge via infiltration
- A hybrid Approach
- Discharge to a watercourse/surface water body
- Discharge to a surface water sewer
- Discharge to a combined sewer

Rainwater re-use

In line with the updated 2020 Essex County Council SuDS Design Guide, rainwater re-use should be considered as part of any development. If this is not proposed as part of an application a clear explanation should be provided to demonstrate why this is not a viable option of source control on site. Essex is likely to experience increasing water scarcity in the near future so rainwater re-use needs to be strongly considered as part of any application for larger sites, however it should also be

considered for smaller sites. If rainwater re-use is excluded without explanation, then the ECC SuDS team will ask for further information. For more detailed advice please read the following section in our new design guide:

Infiltration

If infiltration is proposed, groundwater testing and infiltration testing in line with BRE 365 will need to be submitted to show that infiltration is feasible. Any infiltration storage devices should have 1m between the base of the storage device and seasonal high groundwater level.

If infiltration is unlikely to be possible at the site due to ground conditions, then we will still require high level ground investigations in order to prove that this is not a viable option.

Where the sites have some infiltration capacity, but rates are too low to achieve full infiltration results. We recommend to design hybrid infiltration solution, which uses low level infiltration for smaller events and pipe outfall for larger events. The minimum acceptable rate of infiltration to design soakaway is 1×10^{-6} .

Watercourse or Sewer

If discharge to a watercourse or sewer is proposed, it must be ensured that the site discharges at a suitable rate and any appropriate permissions are in place. Details in regards to the level of the outfall in relation surface water in the outfall feature should also be submitted.

Where the discharge is to a watercourse, the outfall should be above the 1 in 100 plus climate change level or alternatively the effect of surcharging of the outfall should be modelled and appropriate measures should be put in place.

Peak Flow

If following the discharge hierarchy infiltration is not found to be feasible on site, discharge from the site should be limited to the Greenfield 1 in 1 year rate for all storm events up to and including the 1 in 100 (plus climate change) storm event.

Alternatively, surface water can be discharged at equivalent Greenfield rates with the inclusion of long-term storage. Information would need to be provided about the values used to calculate this rate and these would be reviewed on submission.

Please also note that we do not accept a flat rate of 5l/s discharging from the site if the Greenfield 1 in1 year rate is below 5l/s. Historically 5l/s was applied to an outlet where Qbar was lower than 5l/s, as most devices would require an outlet orifice size smaller than 50mm, which would increase the susceptibility of blockage and failure.

There are now vortex flow control devices which can be designed to discharge at 11/s, with 600mm shallow design head and still provide more than a 50mm diameter orifice. Furthermore, it is expected that appropriate measures should be put in place to remove materials that are likely to cause blockage before they reach the flow control device.

Storage requirements

It should be demonstrated how surface water up to the 1 in 100 year plus climate change event is managed within the development.

The Environment Agency updated their climate change allowance in May 2020 and we require the design to be to the upper end allowance (i.e. 40%, 45% which is applicable), unless this can be shown to make the development unviable, in which case the central allowance should be used with a sensitivity analysis carried out for the effects of the upper allowance. Please see the following link for more information on revised climate change allowances: <u>https://www.gov.uk/guidance/flood-risk-assessments-climate-change-allowances</u>

Furthermore a 10% allowance in storage calculations should be provided for urban creep on roof areas. Details regarding the half-drain time of any storage device should also be submitted for review which, in this instance could be demonstrated by the 1 in 30yr +CC RP, followed by the 1 in 10yr RP storm event as necessary. Half drain time should be calculated as per 30 year rainfall intensity allowance updated by Environment agency.

As part of the planning application, detailed calculations considering a range of summer and winter storms should be submitted for storage requirements.

Please note if storage is placed in a path of a surface water flow that comes from off site, it should be demonstrated that any storage features will be sized appropriately for surface water created by the site and off site flows that may enter the storage features.

Water Quality

There should be treatment in line with Chapter 26 of the CIRIA SuDS Manual C753 for all areas of the site.

Whether the site is considered a medium or low pollutant risk depends on the traffic movements expected on the development. If the development is expected to have over 300 traffic movements then the medium pollution indices should be applied whereas the low pollution indices should be applied if less than 300 daily traffic movements are expected.

Considering impact of water pollution, in line with Paragraph 174 of the NPPF, priority should be given to SuDS and all SuDS options should be explored. If proprietary features are used however, it should be shown how these features will

provide enough treatment in terms of total suspended solids, hydrocarbons and metals in line with Chapter 26.

It should be noted that trapped gullies and catch pits are generally not considered appropriate forms of pollution mitigation because of the high risk of remobilisation of pollutants using this method of treatment.

Residual Flood Risk

As part of any planning application it should be ensured that surface water is managed so that there is no flooding in a 1 in 30 year storm event and no internal flooding in a 1 in 100 year, inclusive of climate change storm event. Detail should also be given in regards to exceedance routes above the critical 1 in 100 year, inclusive of climate change storm event, which should be directed away from properties.

Maintenance and Adoption

The on-going maintenance of any features will be necessary to ensure that flooding does not occur due to failure of components. A maintenance plan should be provided as part of the planning application process detailing the maintenance activities and frequencies as well as who will be maintaining the system.

We understand that Anglian Water do adopt SuDS schemes within this region upon a scheme meeting their Adoption Criteria. If you intend to have them adopt your scheme, you will also need to provide proof that you have sent an Expression of Interest to them, or an Approval in Principle of your design.

Additional comments:

For a summary of what we require and when, please see the following link:

Our ECC suds design guide 2020 can be found at the following link:

Our ECC new suds proforma can be found at the following link:

At some point during the planning stage, you would need to show how surface water will be managed during the construction phase.

You would also need to demonstrate how surface water impacts on the drainage system before and after development, and how the new development improves existing land drainage or surface water management.

Under Section 23 of the Land Drainage act (1991) any proposed structure that impacts on the cross-sectional area of a watercourse will require Ordinary Watercourse consent to be sought from Essex County Council. Such applications are separate from and are required in addition to the planning process.

Please note:

The advice provided by the Council's Officers is informal opinion only and is made without prejudice to any formal decision that may be given in the event of an application being submitted.

In particular, any advice given will not constitute a formal response or recommendation of the County Council. Any views of opinions expressed are in good faith and to the best of ability, without prejudice to the formal consideration of any application, which will ultimately be decided by the Local Planning Authority. The County Council cannot guarantee that new issues will not be raised following submission of a planning application and consultation upon it.

Officers cannot give guarantees about the final formal decision that will be made on planning or related applications. However, the advice contained within the written response will be considered by officers when considering any future planning application. This is subject to the proviso that circumstances and information may change or come to light that could alter the position. It should be noted that the weight given to pre-application advice will change if new material considerations arise.

Whilst we have no further comments at this stage, we strongly recommend you engage in pre-application consultation with any other organisations that maybe relevant to the proposed drainage strategy to avoid potential delays at the application stage. If you have any queries about any advice we have given please do not hesitate to contact us.

Yours sincerely,

Richard Horswill Senior Development and Flood Risk Officer Team: Green Infrastructure and Sustainable Drainage Service: Climate Action and Mitigation Essex County Council

Internet: <u>www.essex.gov.uk</u> Email: